Functional mechanisms for type 2 diabetes-associated genetic variants.

[1]  D. Chasman,et al.  Integrating Genetic, Transcriptional, and Functional Analyses to Identify 5 Novel Genes for Atrial Fibrillation , 2014, Circulation.

[2]  C. Daub,et al.  Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. , 2014, Cell metabolism.

[3]  Junhui Chen,et al.  Identifying Candidate Genes for Type 2 Diabetes Mellitus and Obesity through Gene Expression Profiling in Multiple Tissues or Cells , 2013, Journal of diabetes research.

[4]  P. Visscher,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013, Nature.

[5]  Omar Ali,et al.  Genetics of type 2 diabetes. , 2013, World journal of diabetes.

[6]  R. Dobrowsky,et al.  Differential expression of neuregulin-1 isoforms and downregulation of erbin are associated with Erb B2 receptor activation in diabetic peripheral neuropathy , 2013, Acta neuropathologica communications.

[7]  Martin Engel,et al.  Neuregulin-1 signalling and antipsychotic treatment , 2013, Psychopharmacology.

[8]  Chun Gui,et al.  Neuregulin-1/ErbB signaling is impaired in the rat model of diabetic cardiomyopathy. , 2012, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[9]  M. McCarthy,et al.  Amerind Ancestry, Socioeconomic Status and the Genetics of Type 2 Diabetes in a Colombian Population , 2012, PloS one.

[10]  Matthew Stephens,et al.  Dissecting the regulatory architecture of gene expression QTLs , 2012, Genome Biology.

[11]  D. Schoepf,et al.  Type-2 diabetes mellitus in schizophrenia: Increased prevalence and major risk factor of excess mortality in a naturalistic 7-year follow-up , 2012, European Psychiatry.

[12]  C. Langefeld,et al.  Genome-Wide Association Scan for Survival on Dialysis in African-Americans with Type 2 Diabetes , 2011, American Journal of Nephrology.

[13]  Christopher D. Brown,et al.  Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue , 2011, PLoS genetics.

[14]  Xinzhong Li,et al.  Bio-informatics analysis of a gene co-expression module in adipose tissue containing the diet-responsive gene Nnat , 2010, BMC Systems Biology.

[15]  P. Chou,et al.  Prevalence of diabetes in patients with bipolar disorder in Taiwan: a population-based national health insurance study. , 2010, General hospital psychiatry.

[16]  J. Lieberman,et al.  Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. , 2010, Trends in pharmacological sciences.

[17]  Peter Kraft,et al.  Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. , 2010, Human molecular genetics.

[18]  Silke Szymczak,et al.  Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility , 2010, PloS one.

[19]  Joseph K. Pickrell,et al.  Understanding mechanisms underlying human gene expression variation with RNA sequencing , 2010, Nature.

[20]  R. Guigó,et al.  Transcriptome genetics using second generation sequencing in a Caucasian population , 2010, Nature.

[21]  S. Patten,et al.  Prevalence of cardiovascular risk factors and disease in people with schizophrenia: A population-based study , 2010, Schizophrenia Research.

[22]  P. Elliott,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[23]  P. Deloukas,et al.  Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner , 2009, Science.

[24]  Akira Sawa,et al.  Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1–ErbB4 and DISC1 , 2009, Trends in Neurosciences.

[25]  M. Daly,et al.  Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions , 2009, PLoS genetics.

[26]  M. McCarthy,et al.  Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data , 2009, Diabetes.

[27]  M. Stephens,et al.  High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene Regulation , 2008, PLoS genetics.

[28]  John D. Storey,et al.  Mapping the Genetic Architecture of Gene Expression in Human Liver , 2008, PLoS biology.

[29]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[30]  D. Stephan,et al.  A survey of genetic human cortical gene expression , 2007, Nature Genetics.

[31]  D. Koller,et al.  Population genomics of human gene expression , 2007, Nature Genetics.

[32]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[33]  P. Wilson,et al.  Parental transmission of type 2 diabetes: the Framingham Offspring Study. , 2000, Diabetes.

[34]  P. Poulsen,et al.  Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study , 1999, Diabetologia.

[35]  H. Ariga,et al.  Molecular cloning of MSSP-2, a c-myc gene single-strand binding protein: characterization of binding specificity and DNA replication activity. , 1994, Nucleic acids research.

[36]  G. Abecasis,et al.  Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S10 References a Genome-wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2022 .

[37]  J. Danesh,et al.  Edinburgh Research Explorer Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes , 2022 .