On the cellular and network bases of epileptic seizures.

The highly interconnected networks of the mammalian forebrain can generate a wide variety of synchronized activities, including those underlying epileptic seizures, which often appear as a transformation of otherwise normal brain rhythms. The cerebral cortex and hippocampus are particularly prone to the generation of the large, synchronized bursts of activity underlying many forms of seizures owing to strong recurrent excitatory connections, the presence of intrinsically burst-generating neurons, ephaptic interactions among closely spaced neurons, and synaptic plasticity. The simplest form of epileptiform activity in these structures is the interictal spike, a synchronized burst of action potentials generated by recurrent excitation, followed by a period of hyperpolarization, in a localized pool of pyramidal neurons. Seizures can also be generated in response to a loss of balance between excitatory and inhibitory influences and can take the form of either tonic depolarizations or repetitive, rhythmic burst discharges, either as clonic or spike-wave activity, again mediated both by intrinsic membrane properties and synaptic interactions. The interaction of the cerebral cortex and the thalamus, in conjunction with intrathalamic communication, can also generate spike waves similar to those occurring during human absence seizure discharges. Although epileptic syndromes and their causes are diverse, the cellular mechanisms of seizure generation appear to fall into only two categories: rhythmic or tonic "runaway" excitation or the synchronized and rhythmic interplay between excitatory and inhibitory neurons and membrane conductances.

[1]  L. Wilkins The Epileptic Seizure , 1958, Neurology.

[2]  C. A. Marsan,et al.  CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. , 1964, Experimental neurology.

[3]  S. Andersson,et al.  Physiological basis of the alpha rhythm , 1968 .

[4]  G F Ayala,et al.  Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. , 1970, Journal of neurophysiology.

[5]  F. Dreifuss,et al.  Responsiveness before, during, and after spike‐wave paroxysms , 1974, Neurology.

[6]  M Steriade,et al.  Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. , 1974, Electroencephalography and clinical neurophysiology.

[7]  G. Somjen,et al.  Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures. , 1976, Electroencephalography and clinical neurophysiology.

[8]  M. Steriade,et al.  Cortically elicited spike-wave after discharges in thalamic neurons. , 1976, Electroencephalography and clinical neurophysiology.

[9]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[10]  R. Miles,et al.  Single neurones can initiate synchronized population discharge in the hippocampus , 1983, Nature.

[11]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[12]  B. Connors Initiation of synchronized neuronal bursting in neocortex , 1984, Nature.

[13]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[14]  P Kellaway,et al.  Sleep and Epilepsy , 1985, Epilepsia.

[15]  M. Dichter,et al.  Cellular mechanisms of epilepsy: a status report. , 1987, Science.

[16]  W. W. Anderson,et al.  The NMDA receptor antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis but not epileptiform bursting in the rat hippocampal slice. , 1987, Journal of neurophysiology.

[17]  M. Mauk,et al.  Activity-evoked increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. , 1987, Journal of neurophysiology.

[18]  A. Williamson,et al.  A transient calcium‐dependent potassium component of the epileptiform burst after‐hyperpolarization in rat hippocampus. , 1988, Journal of Physiology.

[19]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[20]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  B. Connors,et al.  Periodicity and directionality in the propagation of epileptiform discharges across neocortex. , 1988, Journal of neurophysiology.

[22]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[23]  P. Gloor,et al.  Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy , 1988, Trends in Neurosciences.

[24]  D. McCormick,et al.  GABA as an inhibitory neurotransmitter in human cerebral cortex. , 1989, Journal of neurophysiology.

[25]  D. Pinault,et al.  Antidromic firing occurs spontaneously on thalamic relay neurons: Triggering of somatic intrinsic burst discharges by ectopic action potentials , 1989, Neuroscience.

[26]  P. Schwindt,et al.  Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. , 1989, Journal of neurophysiology.

[27]  W. W. Anderson,et al.  NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. , 1989, Science.

[28]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[29]  George K. Kostopoulos,et al.  Thalamocortical Relationships in Generalized Epilepsy with Bilaterally Synchronous Spike-and-Wave Discharge , 1990 .

[30]  D. McCormick,et al.  Functional properties of a slowly inactivating potassium current in guinea pig dorsal lateral geniculate relay neurons. , 1991, Journal of neurophysiology.

[31]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[32]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[33]  I. Soltesz,et al.  Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[34]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[35]  A. Coenen,et al.  Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats , 1992, Epilepsy Research.

[36]  A. Depaulis,et al.  Involvement of intrathalamic GABA b neurotransmission in the control of absence seizures in the rat , 1992, Neuroscience.

[37]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[38]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[39]  W. A. Wilson,et al.  The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. , 1992, Science.

[40]  I. Soltesz,et al.  GABAA and pre- and post-synaptic GABAB receptor-mediated responses in the lateral geniculate nucleus. , 1992, Progress in brain research.

[41]  D. Pinault Ectopic axonal firing in an epileptic cortical focus is not triggered by thalamocortical volleys during the interictal stage , 1992, Brain Research.

[42]  D. Contreras,et al.  Intracellular evidence for incompatibility between spindle and delta oscillations in thalamocortical neurons of cat , 1992, Neuroscience.

[43]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  R. Metherate,et al.  Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  R. Traub,et al.  Analysis of the propagation of disinhibition‐induced after‐discharges along the guinea‐pig hippocampal slice in vitro. , 1993, The Journal of physiology.

[47]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[48]  M. Hines,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes. , 1993, Journal of neurophysiology.

[49]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  R J Porter,et al.  The Absence Epilepsies , 1993, Epilepsia.

[51]  R. Traub,et al.  Synaptic and intrinsic conductances shape picrotoxin‐induced synchronized after‐discharges in the guinea‐pig hippocampal slice. , 1993, The Journal of physiology.

[52]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  M. Vergnes,et al.  Calcium‐Dependent Regulation of Genetically Determined Spike and Waves by the Reticular Thalamic Nucleus of Rats , 1993, Epilepsia.

[54]  S. Stasheff,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. , 1993, Journal of neurophysiology.

[55]  R. Traub,et al.  Are there unifying principles underlying the generation of epileptic afterdischarges in vitro? , 1994, Progress in brain research.

[56]  R. Traub,et al.  Simulations of epileptiform activity in the hippocampal CA3 region in vitro , 1994, Hippocampus.

[57]  D. Prince,et al.  Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. , 1994, Journal of neurophysiology.

[58]  A. Agmon,et al.  Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro. , 1994, Journal of neurophysiology.

[59]  M Steriade,et al.  Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. , 1994, Journal of neurophysiology.

[60]  D. Contreras,et al.  Synchronized sleep oscillations and their paroxysmal developments , 1994, Trends in Neurosciences.

[61]  A. Davies,et al.  Intrinsic programmes of growth and survival in developing vertebrate neurons , 1994, Trends in Neurosciences.

[62]  J G Jefferys,et al.  Experimental neurobiology of epilepsies. , 1994, Current opinion in neurology.

[63]  JO McNamara,et al.  Cellular and molecular basis of epilepsy , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  M. Scanziani,et al.  Role of excitatory amino acid and GABAB receptors in the generation of epileptiform activity in disinhibited hippocampal slice cultures , 1994, Neuroscience.

[65]  M. de Curtis,et al.  Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[67]  R. Traub,et al.  Cellular mechanisms of 4‐aminopyridine‐induced synchronized after‐discharges in the rat hippocampal slice. , 1995, The Journal of physiology.

[68]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[69]  D Contreras,et al.  Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  M. Deschenes,et al.  The Axonal Arborization of Single Thalamic Reticular Neurons in the Somatosensory Thalamus of the Rat , 1995, The European journal of neuroscience.

[71]  E. G. Jones,et al.  Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus , 1995, The Journal of comparative neurology.

[72]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[73]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[74]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[75]  Heiko J. Luhmann,et al.  Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy , 1995, Epilepsy Research.

[76]  D R Fish,et al.  Benzodiazepine‐GABAA Receptors in Idiopathic Generalized Epilepsy Measured with [11C]Flumazenil and Positron Emission Tomography , 1995, Epilepsia.

[77]  D. Pinault Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals , 1995, Brain Research Reviews.

[78]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[80]  D Contreras,et al.  State-dependent fluctuations of low-frequency rhythms in corticothalamic networks , 1996, Neuroscience.

[81]  J R Huguenard,et al.  Low-threshold calcium currents in central nervous system neurons. , 1996, Annual review of physiology.

[82]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[83]  J R Huguenard,et al.  GABAB receptor‐mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro. , 1996, The Journal of physiology.

[84]  K. Rockland,et al.  Collateralized divergent feedback connections that target multiple cortical areas , 1996, The Journal of comparative neurology.

[85]  Y. Yaari,et al.  Ionic basis of spike after‐depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. , 1996, The Journal of physiology.

[86]  B. Bean,et al.  GABAB Receptor-Activated Inwardly Rectifying Potassium Current in Dissociated Hippocampal CA3 Neurons , 1996, The Journal of Neuroscience.

[87]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[88]  Y. Yaari,et al.  Spike after‐depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. , 1996, The Journal of physiology.

[89]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[90]  D. Prince,et al.  Heterogeneous axonal arborizations of rat thalamic reticular neurons in the ventrobasal nucleus , 1996, The Journal of comparative neurology.

[91]  M. Curtis,et al.  Cortical versus thalamic mechanisms underlying spike and wave discharges in GAERS , 1996, Epilepsy Research.

[92]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[94]  Y. Yaari,et al.  Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. , 1997, Journal of neurophysiology.

[95]  D Contreras,et al.  Spindle oscillations during cortical spreading depression in naturally sleeping cats. , 1997, Neuroscience.

[96]  J R Huguenard,et al.  Nucleus-Specific Chloride Homeostasis in Rat Thalamus , 1997, The Journal of Neuroscience.

[97]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[98]  Maria V. Sanchez-Vives,et al.  Inhibitory Interactions between Perigeniculate GABAergic Neurons , 1997, The Journal of Neuroscience.

[99]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[100]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[101]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[102]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[103]  D. Contreras,et al.  Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. , 1997, Journal of neurophysiology.

[104]  B. Connors,et al.  Differential Regulation of Neocortical Synapses by Neuromodulators and Activity , 1997, Neuron.

[105]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[106]  Maria V. Sanchez-Vives,et al.  Functional Properties of Perigeniculate Inhibition of Dorsal Lateral Geniculate Nucleus Thalamocortical Neurons In Vitro , 1997, The Journal of Neuroscience.

[107]  Florin Amzica,et al.  The K-complex: Its slow (<1-Hz) rhythmicity and relation to delta waves , 1997, Neurology.

[108]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[109]  D. Contreras,et al.  Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. , 1998, Journal of neurophysiology.

[110]  I. Módy Ion channels in epilepsy. , 1998, International review of neurobiology.

[111]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.

[112]  B. Alger,et al.  Transient suppression of GABAA-receptor-mediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. , 1998, Journal of neurophysiology.

[113]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[114]  D. McCormick,et al.  The Functional Influence of Burst and Tonic Firing Mode on Synaptic Interactions in the Thalamus , 1998, The Journal of Neuroscience.

[115]  D. Pinault,et al.  Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy , 1998, The Journal of physiology.

[116]  D. McCormick,et al.  Periodicity of thalamic spindle waves is abolished by ZD7288,a blocker of Ih. , 1998, Journal of neurophysiology.

[117]  B W Connors,et al.  Layer‐Specific Pathways for the Horizontal Propagation of Epileptiform Discharges in Neocortex , 1998, Epilepsia.

[118]  M. Avoli,et al.  Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro , 1998, The Journal of physiology.

[119]  H R Parri,et al.  On the Action of the Anti-Absence Drug Ethosuximide in the Rat and Cat Thalamus , 1998, The Journal of Neuroscience.

[120]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. , 1998, Journal of neurophysiology.

[121]  D. Contreras,et al.  Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. , 1998, Journal of neurophysiology.

[122]  Neil V Marrion,et al.  Calcium-activated potassium channels , 1998, Current Opinion in Neurobiology.

[123]  D. McCormick,et al.  Periodicity of Thalamic Synchronized Oscillations: the Role of Ca2+-Mediated Upregulation of Ih , 1998, Neuron.

[124]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms. , 1998, Journal of neurophysiology.

[125]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[126]  R. Traub,et al.  Electrophysiological substrates for focal epilepsies. , 1998, Progress in brain research.

[127]  T. Pedley,et al.  Advances in the medical treatment of epilepsy. , 1998, Annual review of medicine.

[128]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. , 1998, Journal of neurophysiology.

[129]  L. Danober,et al.  Pathophysiological mechanisms of genetic absence epilepsy in the rat , 1998, Progress in Neurobiology.

[130]  Kevin J. Staley,et al.  Presynaptic modulation of CA3 network activity , 1998, Nature Neuroscience.

[131]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[132]  A. Depaulis,et al.  Absence epilepsy: advances in experimental animal models. , 1999, Advances in neurology.

[133]  I. Módy Synaptic plasticity in kindling. , 1999, Advances in neurology.

[134]  C. Borck,et al.  Seizure-like events in disinhibited ventral slices of adult rat hippocampus. , 1999, Journal of neurophysiology.

[135]  D DiFrancesco,et al.  Dual allosteric modulation of pacemaker (f) channels by cAMP and voltage in rabbit SA node , 1999, The Journal of physiology.

[136]  S Clark,et al.  Mechanisms of epileptogenesis. , 1999, Advances in neurology.

[137]  A. Destexhe,et al.  Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? , 1999, The European journal of neuroscience.

[138]  V. Meskenaite,et al.  GABAB‐receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization , 1999, The European journal of neuroscience.

[139]  J. McNamara Emerging insights into the genesis of epilepsy , 1999, Nature.

[140]  J. Huguenard Neuronal circuitry of thalamocortical epilepsy and mechanisms of antiabsence drug action. , 1999, Advances in neurology.

[141]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[142]  L. Haberly,et al.  Sustained Plateau Activity Precedes and Can Generate Ictal-Like Discharges in Low-Cl− Medium in Slices from Rat Piriform Cortex , 1999, The Journal of Neuroscience.

[143]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[144]  B. Connors,et al.  Epileptiform Propagation Patterns Mediated by NMDA and Non‐NMDA Receptors in Rat Neocortex , 1999, Epilepsia.

[145]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[146]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[147]  A. Destexhe,et al.  Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices , 1999, Neuroscience.

[148]  D. McCormick,et al.  Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons , 2000, The Journal of Neuroscience.

[149]  M Migliore,et al.  Dendritic potassium channels in hippocampal pyramidal neurons , 2000, The Journal of physiology.

[150]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[151]  M. Rogawski KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy , 2000, Trends in Neurosciences.

[152]  Maria V. Sanchez-Vives,et al.  Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro , 2000, The Journal of Neuroscience.

[153]  S. Galoyan,et al.  Long-lasting potentiation of epileptiform bursts by group I mGluRs is NMDA receptor independent. , 2000, Journal of neurophysiology.

[154]  J. Huguenard,et al.  Reciprocal Inhibitory Connections Regulate the Spatiotemporal Properties of Intrathalamic Oscillations , 2000, The Journal of Neuroscience.

[155]  A. Destexhe,et al.  Cortical Feedback Controls the Frequency and Synchrony of Oscillations in the Visual Thalamus , 2000, The Journal of Neuroscience.

[156]  A. Thomson Facilitation, augmentation and potentiation at central synapses , 2000, Trends in Neurosciences.

[157]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[158]  D. McCormick,et al.  Corticothalamic Inputs Control the Pattern of Activity Generated in Thalamocortical Networks , 2000, The Journal of Neuroscience.