A systematic approach is proposed for evaluating the cost-effectiveness of existing design codes from the perspective of lifecycle cost consideration. In the life cycle cost formulation, cost of construction, damage cost, road user cost, as well as discount cost over the design life of the bridge are considered. The optimal performance is selected on the basis of minimum life cycle cost. The performance of a typical two-span bridge designed according to a current code provision for different earthquake ground motion levels is predicted and optimal target performance is selected based on life cycle cost with different assumptions of user cost. It is demonstrated that life cycle cost should be considered in the design phase of a new structure or of a structure to be retrofitted, and the target performance significantly depends on the expected average daily traffic for the road. RESUME – Une approche systematique est proposee pour l’evaluation de l’efficacite economique de certains codes de conception dans le formalisme du cout total sur cycle de vie incluant cout de construction, cout des reparations apres un tremblement de terre, le cout des delais pour les usagers et les amortissements sur la duree de vie de l’ouvrage. La performance d’un pont typique de deux travees concu avec les codes actuels est predite et l’objectif de performance optimum est calcule avec une approche de cout total en utilisant plusieurs hypotheses de cout usager. Il est demontre que pour une performance optimale sous seisme, le nombre moyen de vehicules par jour et les possibilites de detour sont essentielles.
[1]
John B. Mander,et al.
SEISMIC DESIGN OF BRIDGE PIERS
,
1984
.
[2]
Marc O. Eberhard,et al.
Practical performance model for bar buckling
,
2005
.
[3]
C. Allin Cornell,et al.
Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines
,
2002
.
[4]
R V Nutt,et al.
IMPROVED SEISMIC DESIGN CRITERIA FOR CALIFORNIA BRIDGES: PROVISIONAL RECOMMENDATIONS
,
1996
.
[5]
Frederic Legeron,et al.
Seismic vulnerability of hollow core concrete bridge piers
,
2007
.
[6]
Y. K. Wen,et al.
Minimum Building Life-Cycle Cost Design Criteria. I: Methodology
,
2001
.
[7]
Jack P. Moehle,et al.
Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Columns
,
2004
.
[8]
Kazuhiko Kawashima,et al.
STRESS-STRAIN MODEL FOR CONFINED REINFORCED CONCRETE IN BRIDGE PIERS
,
1997
.
[9]
Jacky Mazars,et al.
Damage Mechanics Modeling of Nonlinear Seismic Behavior of Concrete Structures
,
2005
.
[10]
Pedro F. Silva,et al.
Development of a Performance Evaluation Database for Concrete Bridge Components and Systems under Simulated Seismic Loads
,
2000
.