A STABILIZED SCHEME FOR THE LAGRANGE MULTIPLIER METHOD FOR ADVECTION-DIFFUSION EQUATIONS

We consider a new stabilized finite element method for advection-diffusion equations, where the Dirichlet boundary condition is imposed in a weak sense by Lagrange multipliers. The inf–sup condition of the corresponding mixed problem is circumvented by adding some further terms. Using the SUPG-stabilization, an optimal a priori estimate is shown for the singularly perturbed case. Then we present an a posteriori error estimator for our stabilized scheme. Some numerical experiments support the theoretical results. The present results are basic for a nonconforming three-field formulation of the problem.

[1]  Wolfgang Dahmen,et al.  Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method , 2003, Math. Comput..

[2]  Gert Lube,et al.  Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems , 1994 .

[3]  Gunar Matthies,et al.  The Streamline–Diffusion Method for Conforming and Nonconforming Finite Elements of Lowest Order Applied to Convection–Diffusion Problems , 2001, Computing.

[4]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[5]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[6]  Wolfgang Dahmen,et al.  Appending boundary conditions by Lagrange multipliers: Analysis of the LBB condition , 2001, Numerische Mathematik.

[7]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[8]  Juhani Pitkäranta,et al.  Local stability conditions for the Babuška method of Lagrange multipliers , 1980 .

[9]  J. Freund The space-continuous–discontinuous Galerkin method , 2001 .

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  Silvia Bertoluzza,et al.  Wavelet Stabilization and Preconditioning for Domain Decomposition , 1999 .

[12]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[13]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[15]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[16]  P. Tallec,et al.  Domain decomposition with nonmatching grids: augmented Lagrangian approach , 1995 .

[17]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[18]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[19]  Franco Brezzi,et al.  Stabilization of Galerkin Methods and Applications to Domain Decomposition , 1992, 25th Anniversary of INRIA.

[20]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[21]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[22]  Giancarlo Sangalli,et al.  A robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems , 2001, Numerische Mathematik.

[23]  Franco Brezzi,et al.  Error estimates for the three-field formulation with bubble stabilization , 2001, Math. Comput..

[24]  Stefano Berrone,et al.  Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods , 2001 .

[25]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .