Local Information Processing for Decision Making in Decentralised Sensing Networks

This paper describes consequences of local information processing for decision making in decentralised systems of sensor nodes. In decentralised data fusion systems, nodes take decisions based on information acquired locally. The ability of such nodes to fuse or combine information is linked to network organisation. Earlier work demonstrates a problem of inconsistency which arises given cyclic information flow in decentralised systems where nodes combine global information. This work shows how this inconsistency limits the decision making capabilities of the sensor nodes. Consequences for real-world systems using decentralised processes for decision making in process monitoring, tracking and aviation are discussed.

[1]  John N. Tsitsiklis,et al.  On the complexity of decentralized decision making and detection problems , 1985 .

[2]  Dimitri Bertsekas,et al.  Distributed dynamic programming , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  D. E. Bell,et al.  Decision making: Descriptive, normative, and prescriptive interactions. , 1990 .

[4]  Dimitri P. Bertsekas,et al.  Distributed asynchronous computation of fixed points , 1983, Math. Program..

[5]  S. Grime,et al.  Data fusion in decentralized sensor networks , 1994 .

[6]  Chee-Yee Chong,et al.  Fusion technologies for drug interdiction , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[7]  Norman,et al.  Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .

[8]  Ki Hang Kim,et al.  Introduction to mathematical consensus theory , 1980 .

[9]  Hugh F. Durrant-Whyte,et al.  A decentralized Bayesian algorithm for identification of tracked targets , 1993, IEEE Trans. Syst. Man Cybern..

[10]  R. Radner Hierarchy: The Economics On Managing , 1990 .

[11]  R. Bellman Dynamic programming. , 1957, Science.

[12]  T. Perry In search of the future of air traffic control , 1997 .

[13]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[14]  K. Arrow Social Choice and Individual Values , 1951 .

[15]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[16]  H. F. Durrant-White Consistent integration and propagation of disparate sensor observations , 1987 .

[17]  Bowen Alpern,et al.  Defining Liveness , 1984, Inf. Process. Lett..

[18]  P. Rosenstiehl,et al.  INTELLIGENT GRAPHS: NETWORKS OF FINITE AUTOMATA CAPABLE OF SOLVING GRAPH PROBLEMS , 1972 .

[19]  H. F. Durrant-Whyte,et al.  Fully decentralised algorithm for multisensor Kalman filtering , 1991 .

[20]  Yu-Chi Ho,et al.  Team decision theory and information structures , 1980 .

[21]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[22]  Y. Bar-Shalom Tracking and data association , 1988 .

[23]  Hugh Durrant-Whyte,et al.  Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach , 1995 .