A Fermi-type rule for contact embedded-eigenvalue perturbations

A perturbation theory of embedded eigenvalues is constructed for a class of models with a contact interaction which are inspired by heavy-quarkonia mesonic decays.

[1]  P. Seba,et al.  Schrödinger-Operators with Singular Interactions , 1994 .

[2]  V. Weisskopf,et al.  Hardon decay processes and the quark model , 1967 .

[3]  Sergio Albeverio,et al.  Solvable Models in Quantum Mechanics , 1988 .

[4]  P. Seba,et al.  Dirac operators with a spherically symmetric δ-shell interaction , 1989 .

[5]  Hrvoje Kraljević,et al.  Functional Analysis II , 1987 .

[6]  P. Exner A Model of Resonance Scattering on Curved Quantum Wires , 1990 .

[7]  W. Lucha,et al.  Bound states of quarks , 1991 .

[8]  J. Antoine,et al.  Exactly solvable models of sphere interactions in quantum mechanics , 1987 .

[9]  P. Exner Open Quantum Systems And Feynman Integrals , 1984 .

[10]  T. Trenkler,et al.  The free Dirac operator on compact and noncompact graphs , 1990 .

[11]  Barry Simon,et al.  Analysis of Operators , 1978 .

[12]  P. Seba,et al.  Applications of self-adjoint extensions in quantum physics : proceedings of a conference held at the Laboratory of Theoretical Physics, JINR, Dubna, USSR, September 29-October 1, 1987 , 1989 .

[13]  T. Appelquist,et al.  Heavy Quarks and Longlived Hadrons , 1975 .

[14]  F. Gesztesy,et al.  New analytically solvable models of relativistic point interactions , 1987 .

[15]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[16]  B. Pavlov,et al.  Scattering problems on noncompact graphs , 1988 .

[17]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .