Population Viability Analysis for an Endangered Plant

: Demographic modeling is used to understand the population viability of Furbish's lousewort, Pedicularis furbishiae, a perennial plant species endemic to the St. John River Valley in northern Maine. Environment-specific summaries of demographic parameters (survivorship, growth, and fecundity) over four years, organized into stage-based projection matrices, provide predictions of future population dynamics given a deterministic extension of past conditions. Stochastic modeling, using (I) empirically observed variation in demographic parameters, and (2) estimated rates of natural catastrophes, leads to predictions of extinction probability. P. furbishiae viability has varied widely over the study period Viable populations with finite rates of increase > 1 are found where cover is low, woody plants do not dominate, and disturbance does not occur. Rates of increase vary over time, suggesting that stochastic analyses would be realistic. Stochastic measures of population viability incorporating environmental variation suggest that early successional environments, especially wetter sites, can support viable populations in the absence of disturbance. However; observed rates of natural catastrophe dominate viability estimates of individual populations. Metapopulation dynamics feature extinction rates that are greater than recolonization rates, and may be affected by land use in the watershed Species management needs to consider a large-scale view of the riverine corridor. Resumen: En este trabajo se emplea el modelaje demografico para esclarecer la viabilidad poblacional de la planta perenne Pedicularis furbishiae, (Furbish's lousewort), endemica al valle del rio St. John, en el norte del estado de Maine. Los resumenes de parametros demograficos, (sobrevivencia, crecimiento, y fecundidad), de un periodo de cuatro anos, especificos para cada tipo de ambiente, se organizaron en matrices de proyeccion por etapas, para predecir la futura dinamica poblacional en base a una extension deterministica de condiciones anteriores. Los modelos estocasticos, utilizando (1) variaciones en parametros demograficos observadas en la practica, y (2) indices estimados de catastrofes naturales, conducen a predicciones de probabiliaades de extincion. La viabilidad de P. furbishiae vario ampliamente durante el periodo de estudio. Se encuentran poblaciones viables (con lamda mayor a 1) en areas con poca cobertura donde no dominan las plantas lenosas y no existe alteracion. Las tasas de incremento varian con el tiempo, sugiriendo que los analisis estocaticos son realistas. Las medidas estocasticas de viabilidad poblacional que incorporan variaciones ambientales, sugieren que los ambientes en etapas de sucesion temprana, especialmente en los sitios mas humedos, podrian sostener poblaciones viables, si es que no existe alteracion, Sin embargo, las estimaciones de viabilidad para poblaciones individuales, estan dominadas por los porcentajes de catastrofes naturales. La dinamica de metapoblaciones presenta indices de extincion mayores que los indices de recolonizacion, y podrian ser afectades por el uso de tierras en las areas de las cuencas hidrograficas correspondientes. El manejo de especies necesita considerar elpanorama a escala mayor del corredor fluvial.

[1]  Daniel Goodman,et al.  Viable Populations for Conservation: The demography of chance extinction , 1987 .

[2]  Gary E. Belovsky,et al.  Viable Populations for Conservation: Extinction models and mammalian persistence , 1987 .

[3]  P. Keddy,et al.  Species Competitive Ability and Position Along a Natural Stress/Disturbance Gradient , 1986 .

[4]  D. Simberloff,et al.  What do genetics and ecology tell us about the design of nature reserves , 1986 .

[5]  Henry C. Tuckwell,et al.  Logistic Growth with Random Density Independent Disasters , 1981 .

[6]  H. Caswell Stable Population Structure and Reproductive Value for Populations with Complex Life Cycles , 1982 .

[7]  N Keiding,et al.  Extinction and exponential growth in random environments. , 1975, Theoretical population biology.

[8]  P. Keddy Shoreline Vegetation in Axe Lake, Ontario: Effects of Exposure on Zonation Patterns , 1983 .

[9]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[10]  Sidney I. Resnick,et al.  Viable Populations for Conservation: Minimum viable population size in the presence of catastrophes , 1987 .

[11]  T. Jones Archaeology in a natural area: the case at Landels-Hill Big Creek Reserve. , 1986 .

[12]  L. W. Macior Plant community and pollinator dynamics in the evolution of pollination mechanisms in Pedicularis (Scrophulariaceae) , 1982 .

[13]  Hal Caswell,et al.  Population Growth Rates and Age Versus Stage-Distribution Models for Teasel (Dipsacus Sylvestris Huds.) , 1977 .

[14]  S. Hubbell,et al.  On Measuring the Intrinsic Rate of Increase of Populations with Heterogeneous Life Histories , 1979, The American Naturalist.

[15]  Lynn A. Maguire,et al.  Sample Sizes for Minimum Viable Population Estimation , 1987 .

[16]  P. Fiedler,et al.  Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). , 1987 .

[17]  L. Eberhardt,et al.  Population dynamics of Yellowstone grizzly bears , 1985 .

[18]  Z. Sykes,et al.  Some Stochastic Versions of the Matrix Model for Population Dynamics , 1969 .

[19]  D. Goodman How Do Any Species Persist? Lessons for Conservation Biology , 1987 .

[20]  Larry D. Harris,et al.  Nodes, networks, and MUMs: Preserving diversity at all scales , 1986 .

[21]  P. Ehrlich,et al.  Conservation Lessons from Long-Term Studies of Checkerspot Butterflies , 1987 .

[22]  E. Lacey Onset of reproduction in plants: Size-versus age-dependency. , 1986, Trends in ecology & evolution.

[23]  M. Shaffer Viable Populations for Conservation: Minimum viable populations: coping with uncertainty , 1987 .

[24]  G. Merriam,et al.  Patchy environments and species survival: Chipmunks in an agricultural mosaic , 1985 .

[25]  J. Nedelman,et al.  The Statistical Demography of Whooping Cranes , 1987 .

[26]  J. H. Pollard,et al.  On the use of the direct matrix product in analysing certain stochastic population models , 1966 .

[27]  D. S. Powell,et al.  Forest statistics for Maine: 1971 and 1982 , 1984 .

[28]  D. Waller,et al.  Genetic variation in the extreme endemic Pedicularis furbishiae (Scrophulariaceae) , 1987 .

[29]  Paulette Bierzychudek,et al.  The Demography of Jack‐in‐the‐Pulpit, a Forest Perennial that Changes Sex , 1982 .

[30]  M. Shaffer Minimum Population Sizes for Species Conservation , 1981 .

[31]  Sewall Wright,et al.  ON THE ROLES OF DIRECTED AND RANDOM CHANGES IN GENE FREQUENCY IN THE GENETICS OF POPULATIONS , 1948, Evolution; international journal of organic evolution.

[32]  Steward T. A. Pickett,et al.  Patch dynamics and the design of nature reserves , 1978 .

[33]  E. Menges,et al.  SEED SET AND SEED PREDATION IN PEDICULARIS FURBISHIAE, A RARE ENDEMIC OF THE ST. JOHN RIVER, MAINE , 1986 .

[34]  H. Caswell Optimal Life Histories and the Maximization of Reproductive Value: A General Theorem for Complex Life Cycles , 1982 .

[35]  P. T. Manders,et al.  A transition matrix model of the population dynamics of the Clanwilliam cedar (Widdringtonia cedarbergensis) in natural stands subject to fire , 1987 .

[36]  L. W. Macior The Pollination Ecology and Endemic Adaptation of Pedicularis furbishiae S. Wats. , 1978 .

[37]  E. Menges,et al.  Environmental factors affecting establishment and growth of Pedicularis furbishiae, a rare endemic of the St. John River Valley, Maine , 1987 .

[38]  Mark L. Shaffer,et al.  Population Size and Extinction: A Note on Determining Critical Population Sizes , 1985, The American Naturalist.

[39]  D. Levin,et al.  THE COMPARATIVE DEMOGRAPHY OF RECIPROCALLY SOWN POPULATIONS OF PHLOX DRUMMONDII HOOK. I. SURVIVORSHIPS, FECUNDITIES, AND FINITE RATES OF INCREASE , 1985, Evolution; international journal of organic evolution.

[40]  Alan Hastings,et al.  Extinction in Subdivided Habitats , 1987 .