Cubic spline wavelets with complementary boundary conditions

Abstract We propose a new construction of a stable cubic spline-wavelet basis on the interval satisfying complementary boundary conditions of the second order. It means that the primal wavelet basis is adapted to homogeneous Dirichlet boundary conditions of the second order, while the dual wavelet basis preserves the full degree of polynomial exactness. We present quantitative properties of the constructed bases and we show superiority of our construction in comparison to some other known spline wavelet bases in an adaptive wavelet method for the partial differential equation with the biharmonic operator.

[1]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[2]  Ramesh B. Kudenatti,et al.  A fast wavelet-multigrid method to solve elliptic partial differential equations , 2007, Appl. Math. Comput..

[3]  K. Oskolkov,et al.  Schrödinger equation and oscillatory Hilbert transforms of second degree , 1998 .

[4]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[5]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[6]  Rong-Qing Jia,et al.  Wavelet bases of Hermite cubic splines on the interval , 2006, Adv. Comput. Math..

[7]  W. Dahmen,et al.  Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .

[8]  Xuefeng Chen,et al.  Solving diffusion equation using wavelet method , 2011, Appl. Math. Comput..

[9]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[10]  H. S. Kushwaha,et al.  Wavelet based schemes for linear advection-dispersion equation , 2011, Appl. Math. Comput..

[11]  Kai Bittner,et al.  Biorthogonal Spline Wavelets on the Interval , 2005 .

[12]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[13]  Wei Zhao,et al.  Riesz bases of wavelets and applications to numerical solutions of elliptic equations , 2011, Math. Comput..

[14]  C. Micchelli,et al.  Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces , 1993 .

[15]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[16]  Dana Cerná,et al.  Construction of optimally conditioned cubic spline wavelets on the interval , 2011, Adv. Comput. Math..

[17]  Khosrow Maleknejad,et al.  Filter matrix based on interpolation wavelets for solving Fredholm integral equations , 2011 .

[18]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[19]  Khosrow Maleknejad,et al.  Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines , 2006, Appl. Math. Comput..

[20]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[21]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[22]  Miriam Primbs,et al.  New Stable Biorthogonal Spline-Wavelets on the Interval , 2010 .

[23]  Khosrow Maleknejad,et al.  The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets , 2010, Int. J. Comput. Math..

[24]  Rong-Qing Jia Spline wavelets on the interval with homogeneous boundary conditions , 2009, Adv. Comput. Math..

[25]  A. Schneider Biorthogonal Cubic Hermite Spline Multiwavelets on the Interval with Complementary Boundary Conditions , 2009 .

[26]  Yuesheng Xu,et al.  Graded Galerkin methods for the high‐order convection‐diffusion problem , 2009 .