Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process

In this paper, we are particularly interested in the skew Ornstein-Uhlenbeck (OU) process. The skew OU process is a natural Markov process defined by a diffusion process with symmetric local time. Motivated by its widespread applications, we study its parameter estimation. Specifically, we first transform the skew OU process into a tractable piecewise diffusion process to eliminate local time. Then, we discretize the continuous transformed diffusion by using the straightforward Euler scheme and, finally, obtain a more familiar threshold autoregressive model. The developed Bayesian estimation methods in the autoregressive model inspire us to modify a Gibbs sampling algorithm based on properties of the transformed skew OU process. In this way, all parameters including the pair of skew parameters (p, a) can be estimated simultaneously without involving complex integration. Our approach is examined via simulation experiments and empirical analysis of the Hong Kong Interbank Offered Rate (HIBOR) and the CBOE volatility index (VIX), and all of our applications show that our method performs well.

[1]  Yongjin Wang,et al.  Skew Ornstein-Uhlenbeck processes and their financial applications , 2015, J. Comput. Appl. Math..

[2]  P. Collin‐Dufresne,et al.  Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .

[3]  Kung-Sik Chan,et al.  Quasi-likelihood estimation of a threshold diffusion process , 2015 .

[4]  Miguel Martinez,et al.  Statistical estimation for reflected skew processes , 2010 .

[5]  S. Shreve,et al.  Trivariate Density of Brownian Motion, Its Local and Occupation Times, with Application to Stochastic Control , 1984 .

[6]  Lyle D. Broemeling,et al.  Bayesian analysis of threshold autoregressions , 1992 .

[7]  Ming Zhang,et al.  Calculation of Diffusive Shock Acceleration of Charged Particles by Skew Brownian Motion , 2000 .

[8]  Teruo Nakatsuma,et al.  Bayesian analysis of ARMA–GARCH models: A Markov chain sampling approach , 2000 .

[9]  Alan G. White,et al.  Pricing Interest-Rate-Derivative Securities , 1990 .

[10]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[11]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[12]  M. Rutkowski,et al.  Local times of functions of continuous semimartingales , 1995 .

[13]  Jesus Gonzalo,et al.  Subsampling inference in threshold autoregressive models , 2005 .

[14]  J. Ramírez Multi-skewed Brownian motion and diffusion in layered media , 2011 .

[15]  H. Buchholz,et al.  The Confluent Hypergeometric Function: with Special Emphasis on its Applications , 1969 .

[16]  E. Mammen,et al.  Bootstrap of kernel smoothing in nonlinear time series , 2002 .

[17]  Diffusion Processes and their Sample Paths. , 1968 .

[18]  Guangli Xu,et al.  A simple trinomial lattice approach for the skew-extended CIR models , 2017 .

[19]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[20]  Edward C. Waymire,et al.  Corrections for "Occupation and local times for skew Brownian motion with applications to dispersion across an interface" , 2010, 1009.5410.

[21]  Cathy W. S. Chen,et al.  BAYESIAN INFERENCE OF THRESHOLD AUTOREGRESSIVE MODELS , 1995 .

[22]  G. C. Tiao,et al.  Some advances in non‐linear and adaptive modelling in time‐series , 1994 .

[23]  R. Tschernig,et al.  Nonlinear Interest Rate Dynamics and Implications for the Term Structure , 1996 .

[24]  P. Protter Stochastic integration and differential equations , 1990 .

[25]  John Geweke,et al.  BAYESIAN THRESHOLD AUTOREGRESSIVE MODELS FOR NONLINEAR TIME SERIES , 1993 .

[26]  Antoine Lejay Monte Carlo methods for fissured porous media: a gridless approach * , 2004, Monte Carlo Methods Appl..

[27]  Vadim Shcherbakov,et al.  DENSITY OF SKEW BROWNIAN MOTION AND ITS FUNCTIONALS WITH APPLICATION IN FINANCE , 2014, 1407.1715.

[28]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[29]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[30]  J. Harrison,et al.  On Skew Brownian Motion , 1981 .

[31]  Daniel Sheldon,et al.  First Passage Time of Skew Brownian Motion , 2010, Journal of Applied Probability.

[32]  R S Cantrell,et al.  Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design. , 1999, Theoretical population biology.

[33]  R. Lang Effective conductivity and skew Brownian motion , 1995 .

[34]  Iecn Umr Vandoeuvre-les-Nancy F Cnrs,et al.  Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps , 2012 .

[35]  Song-Ping Zhu,et al.  A new closed-form formula for pricing European options under a skew Brownian motion , 2017 .

[36]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[37]  A. Mandelbaum,et al.  Variably Skewed Brownian Motion , 2000 .

[38]  Kung-Sik Chan,et al.  Limiting properties of the least squares estimator of a continuous threshold autoregressive model , 1998 .

[39]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[40]  Yongjin Wang,et al.  THE VALUATION OF OPTIONS ON FOREIGN EXCHANGE RATE IN A TARGET ZONE , 2016 .

[41]  Campbell R. Harvey,et al.  An Empirical Comparison of Alternative Models of the Short-Term Interest Rate , 1992 .

[42]  J. Gall,et al.  One — dimensional stochastic differential equations involving the local times of the unknown process , 1984 .

[43]  Rong Chen,et al.  Blind restoration of linearly degraded discrete signals by Gibbs sampling , 1995, IEEE Trans. Signal Process..

[44]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[45]  Olivier Menoukeu-Pamen,et al.  Efficient Piecewise Trees for the Generalized Skew Vasicek Model with Discontinuous Drift , 2017 .

[46]  Shiyu Song,et al.  On First Hitting Times for Skew CIR Processes , 2016 .

[47]  Antoine Lejay,et al.  Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps , 2012, J. Comput. Phys..

[48]  Antoine Lejay On the constructions of the skew Brownian motion , 2006 .

[49]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[50]  A. Lejay Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion , 2018 .

[51]  Antoine Lejay,et al.  Simulating a diffusion on a graph. Application to reservoir engineering , 2003, Monte Carlo Methods Appl..