Technical Description, Phantom Accuracy, and Clinical Feasibility for Single-Session Lung Radiosurgery Using Robotic Image-Guided Real-time Respiratory Tumor Tracking

To describe the technological background, the accuracy, and clinical feasibility for single session lung radiosurgery using a real-time robotic system with respiratory tracking. The latest version of image-guided real-time respiratory tracking software (Synchrony®, Accuray Incorporated, Sunnyvale, CA) was applied and is described. Accuracy measurements were performed using a newly designed moving phantom model. We treated 15 patients with 19 lung tumors with robotic radiosurgery (CyberKnife®, Accuray) using the same treatment parameters for all patients. Ten patients had primary tumors and five had metastatic tumors. All patients underwent computed tomography-guided percutaneous placement of one fiducial directly into the tumor, and were all treated with single session radiosurgery to a dose of 24 Gy. Follow up CT scanning was performed every two months. All patients could be treated with the automated robotic technique. The respiratory tracking error was less than 1 mm and the overall shape of the dose profile was not affected by target motion and/or phase shift between fiducial and optical marker motion. Two patients required a chest tube insertion after fiducial implantation because of pneumothorax. One patient experienced nausea after treatment. No other short-term adverse reactions were found. One patient showed imaging signs of pneumonitis without a clinical correlation. Single-session radiosurgery for lung tumor tracking using the described technology is a stable, safe, and feasible concept for respiratory tracking of tumors during robotic lung radiosurgery in selected patients. Longer follow-up is needed for definitive clinical results.

[1]  P C Levendag,et al.  Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: Marker placement and early results , 2006, Acta oncologica.

[2]  Michael Flentje,et al.  Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. , 2004, International journal of radiation oncology, biology, physics.

[3]  M. Graham,et al.  Radiation therapy alone for stage I non-small cell lung cancer. , 1993, International journal of radiation oncology, biology, physics.

[4]  Masahiro Hiraoka,et al.  Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. , 2005, International journal of radiation oncology, biology, physics.

[5]  A Schweikard,et al.  Respiration tracking in radiosurgery without fiducials , 2005, The international journal of medical robotics + computer assisted surgery : MRCAS.

[6]  J. Adler,et al.  Robotic Motion Compensation for Respiratory Movement during Radiosurgery , 2000, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[7]  Achim Schweikard,et al.  Respiration tracking in radiosurgery. , 2004, Medical physics.

[8]  Quynh-Thu Le,et al.  Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. , 2003, The Annals of thoracic surgery.

[9]  V. Gebski,et al.  Radical radiotherapy for early nonsmall cell lung cancer. , 1995, International journal of radiation oncology, biology, physics.

[10]  E. Glatstein,et al.  Excessive Toxicity When Treating Central Tumors in a Phase II Study of Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Lung Cancer , 2008 .

[11]  B. Jeremic,et al.  Radiotherapy alone in technically operable, medically inoperable, early-stage (I/II) non-small-cell lung cancer. , 2002, International journal of radiation oncology, biology, physics.

[12]  T. Araki,et al.  Stereotactic hypofractionated high‐dose irradiation for stage I nonsmall cell lung carcinoma , 2004, Cancer.

[13]  P. Blitzer,et al.  Medically Inoperable Lung Carcinoma: The Role of Radiation Therapy. , 1996, Seminars in radiation oncology.

[14]  Stephanie Frost,et al.  Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. , 2003, Chest.

[15]  Michael Flentje,et al.  Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[16]  I. Lax,et al.  Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. , 1995, Acta oncologica.

[17]  Quynh-Thu Le,et al.  Results of a Phase I Dose-Escalation Study Using Single-Fraction Stereotactic Radiotherapy for Lung Tumors , 2006, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[18]  Shinichi Shimizu,et al.  Intrafractional tumor motion: lung and liver. , 2004, Seminars in radiation oncology.

[19]  Maximilian Reiser,et al.  Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. , 2006, Journal of neurosurgery. Spine.