Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

K. D. Sørensen | Ali Amin Al Olama | D. Gudbjartsson | U. Thorsteinsdóttir | M. Nöthen | K. Stefánsson | M. Kogevinas | S. Chanock | H. Goldschmidt | A. Wolk | O. Stephens | G. Thorleifsson | R. Eeles | Z. Kote-Jarai | G. Giles | K. Muir | B. Henderson | J. Schleutker | F. Hamdy | J. Donovan | J. Stanford | S. Ingles | E. John | S. Thibodeau | C. Maier | L. Cannon-Albright | R. Kaneva | J. Batra | D. Easton | C. Tangen | A. Kibel | U. Mellqvist | G. Morgan | H. Einsele | P. Sonneveld | B. Nilsson | P. Pharoah | J. Peto | D. Conti | P. Broderick | R. Houlston | D. Albanes | S. Weinstein | F. Schumacher | G. Cancel-Tassin | F. Wiklund | K. Hemminki | K. Jöckel | T. Rafnar | A. Dunning | B. Nordestgaard | H. Gronberg | M. Roobol | F. Menegaux | A. Swerdlow | S. Neuhausen | A. Försti | F. Canzian | K. Khaw | F. Claessens | P. Law | V. Stevens | P. Hoffmann | K. Penney | U. Gullberg | P. Townsend | H. Nahi | D. Lessel | Bowang Chen | N. Usmani | B. Rosenstein | B. Walker | F. Ross | F. Davies | A. Vangsted | L. Mucci | G. Jackson | H. Thomsen | Jeri Kim | C. Langer | L. Newcomb | Stella Koutros | A. Waage | S. Benlloch | R. Travis | N. Pashayan | C. Cybulski | M. Teixeira | I. Turesson | M. Gago-Domínguez | Mina Ali | E. Johnsson | B. Halvarsson | S. Kristinsson | M. Hansson | R. Kuiper | E. Grindedal | K. De Ruyck | C. West | M. Went | M. van Duin | N. Weinhold | M. Kaiser | David C. Johnson | W. Gregory | A. Holroyd | Jonathan S. Mitchell | Ni L Li | U. Bertsch | C. Campo | J. Hillengass | J. Nickel | M. I. da Silva Filho | Anna-Karin Wihlborg | A. Broyl | A. Sud | S. Kimber | Giulia Orlando | O. Bandapalli | N. F. Andersen | H. Brenner | Ana Vega | A. Razack | Anna‐Karin Wihlborg | D. E. Neal | Judith A. Clements | Jong Y. Park | Brian E. Christopher A. Sara Fredrick R. Ali Amin Al Son Henderson Haiman Benlloch Schumacher Olama | Sonja I. Berndt | C. Haiman | J. Mitchell | H. Pandha | Yong-jie Lu | G. Cancel‐Tassin | Britta Halvarsson | B. Walker | R. Hamilton | D. Neal | A. Olama | A. A. A. Olama | B. Henderson | G. Jackson | M. Teixeira | Lisa F. Newcomb

[1]  S. Chanock,et al.  Division of Cancer Epidemiology and Genetics , 2020, Definitions.

[2]  K. D. Sørensen,et al.  Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma , 2019, Nature Communications.

[3]  Nilanjan Chatterjee,et al.  Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.

[4]  H. Goldschmidt,et al.  Genetic Predisposition to Multiple Myeloma at 5q15 Is Mediated by an ELL2 Enhancer Polymorphism , 2017, Cell reports.

[5]  N. Chatterjee,et al.  Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits and implications for the future , 2017, bioRxiv.

[6]  T. Golub,et al.  Direct evidence for a polygenic etiology in familial multiple myeloma. , 2017, Blood advances.

[7]  E. Skordalakes,et al.  Structural and functional analysis of the human POT1-TPP1 telomeric complex , 2017, Nature Communications.

[8]  Doug Speed,et al.  Re-evaluation of SNP heritability in complex human traits , 2016, Nature Genetics.

[9]  H. Goldschmidt,et al.  Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression , 2016, Nature Communications.

[10]  Alfonso Valencia,et al.  The BLUEPRINT Data Analysis Portal. , 2016, Cell systems.

[11]  Jonathan M. Cairns,et al.  Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.

[12]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[13]  J. Witte,et al.  A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[14]  D. Gudbjartsson,et al.  Genome-wide association study identifies multiple susceptibility loci for multiple myeloma , 2016, Nature Communications.

[15]  D. Wuttke,et al.  Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis , 2016, Cell reports.

[16]  M. Yang,et al.  PRR14 is a novel activator of the PI3K pathway promoting lung carcinogenesis , 2016, Oncogene.

[17]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[18]  D. Kerr,et al.  Implications of polygenic risk for personalised colorectal cancer screening. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[19]  M. Bhasin,et al.  The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival , 2015, Nature Communications.

[20]  Jonathan M. Cairns,et al.  CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data , 2015, Genome Biology.

[21]  M. Dyer,et al.  Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. , 2016, Blood.

[22]  Tom R. Gaunt,et al.  Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel , 2015, Nature Communications.

[23]  G. Morgan,et al.  Implementation of genome-wide complex trait analysis to quantify the heritability in multiple myeloma , 2015, Scientific Reports.

[24]  Viviana I. Risca,et al.  Unraveling the 3D genome: genomics tools for multiscale exploration. , 2015, Trends in genetics : TIG.

[25]  D. Gudbjartsson,et al.  Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma , 2015, Nature Communications.

[26]  Jonathan M. Cairns,et al.  Robust Detection of DNA Looping Interactions in Capture HiC data , 2015 .

[27]  O. Stephens,et al.  Genome-wide scan identifies variant in 2q12.3 associated with risk for multiple myeloma. , 2014, Blood.

[28]  Aneela Majid,et al.  A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia , 2013, Nature Genetics.

[29]  Thomas W. Mühleisen,et al.  Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk , 2013, Nature Genetics.

[30]  L. Pelletier,et al.  CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation , 2013, Current Biology.

[31]  Sandy Chang Cancer chromosomes going to POT1 , 2013, Nature Genetics.

[32]  Asta Försti,et al.  The CCND1 870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma , 2013, Nature Genetics.

[33]  Nilanjan Chatterjee,et al.  Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies , 2013, Nature Genetics.

[34]  Natalie de Souza The ENCODE project , 2012, Nature Methods.

[35]  Natalie de Souza Genomics: The ENCODE project , 2012, Nature Methods.

[36]  P. L. Bergsagel,et al.  MYC addiction: a potential therapeutic target in MM. , 2012, Blood.

[37]  A. Waage,et al.  Addiction to c-MYC in multiple myeloma. , 2012, Blood.

[38]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[39]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[40]  Thomas W. Mühleisen,et al.  Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk , 2011, Nature Genetics.

[41]  C. Carlson,et al.  Principles for the post-GWAS functional characterization of cancer risk loci , 2011, Nature Genetics.

[42]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[43]  G. Morgan,et al.  A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. , 2010, Blood.

[44]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[45]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[46]  D. Hose,et al.  Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation , 2010, Haematologica.

[47]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[48]  Christopher Gignoux,et al.  The 1000 Genomes Project: new opportunities for research and social challenges , 2010, Genome Medicine.

[49]  M. Jourdan,et al.  APRIL and TACI interact with syndecan‐1 on the surface of multiple myeloma cells to form an essential survival loop , 2009, European journal of haematology.

[50]  B. Weiss,et al.  Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis , 2009, Leukemia.

[51]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[52]  P. Casali,et al.  HoxC4 binds to the Aicda promoter to induce AID expression, class switch DNA recombination and somatic hypermutation , 2009, Nature Immunology.

[53]  Yueguo Wang,et al.  Correlation of expression levels of BLyS and its receptors with multiple myeloma. , 2009, Clinical biochemistry.

[54]  T. McDaneld,et al.  Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. , 2008, Journal of animal science.

[55]  P. Schneider,et al.  TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. , 2008, Cytokine & growth factor reviews.

[56]  Jon Wakefield,et al.  A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.

[57]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[58]  T. Rème,et al.  TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines. , 2007, Haematologica.

[59]  K. Hemminki,et al.  Familial risks and temporal incidence trends of multiple myeloma. , 2006, European journal of cancer.

[60]  T. McDaneld,et al.  Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[61]  D. Clayton,et al.  Population structure, differential bias and genomic control in a large-scale, case-control association study , 2005, Nature Genetics.

[62]  V. Pantesco,et al.  The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. , 2005, Blood.

[63]  R. Lutz,et al.  Identification of an Sp factor-dependent promoter in GCET, a gene expressed at high levels in germinal center B cells. , 2004, Molecular immunology.

[64]  B. Harder,et al.  Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. , 2004, Blood.

[65]  W. Alexander,et al.  The SOCS box: a tale of destruction and degradation. , 2002, Trends in biochemical sciences.

[66]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.