Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma
暂无分享,去创建一个
K. D. Sørensen | Ali Amin Al Olama | D. Gudbjartsson | U. Thorsteinsdóttir | M. Nöthen | K. Stefánsson | M. Kogevinas | S. Chanock | H. Goldschmidt | A. Wolk | O. Stephens | G. Thorleifsson | R. Eeles | Z. Kote-Jarai | G. Giles | K. Muir | B. Henderson | J. Schleutker | F. Hamdy | J. Donovan | J. Stanford | S. Ingles | E. John | S. Thibodeau | C. Maier | L. Cannon-Albright | R. Kaneva | J. Batra | D. Easton | C. Tangen | A. Kibel | U. Mellqvist | G. Morgan | H. Einsele | P. Sonneveld | B. Nilsson | P. Pharoah | J. Peto | D. Conti | P. Broderick | R. Houlston | D. Albanes | S. Weinstein | F. Schumacher | G. Cancel-Tassin | F. Wiklund | K. Hemminki | K. Jöckel | T. Rafnar | A. Dunning | B. Nordestgaard | H. Gronberg | M. Roobol | F. Menegaux | A. Swerdlow | S. Neuhausen | A. Försti | F. Canzian | K. Khaw | F. Claessens | P. Law | V. Stevens | P. Hoffmann | K. Penney | U. Gullberg | P. Townsend | H. Nahi | D. Lessel | Bowang Chen | N. Usmani | B. Rosenstein | B. Walker | F. Ross | F. Davies | A. Vangsted | L. Mucci | G. Jackson | H. Thomsen | Jeri Kim | C. Langer | L. Newcomb | Stella Koutros | A. Waage | S. Benlloch | R. Travis | N. Pashayan | C. Cybulski | M. Teixeira | I. Turesson | M. Gago-Domínguez | Mina Ali | E. Johnsson | B. Halvarsson | S. Kristinsson | M. Hansson | R. Kuiper | E. Grindedal | K. De Ruyck | C. West | M. Went | M. van Duin | N. Weinhold | M. Kaiser | David C. Johnson | W. Gregory | A. Holroyd | Jonathan S. Mitchell | Ni L Li | U. Bertsch | C. Campo | J. Hillengass | J. Nickel | M. I. da Silva Filho | Anna-Karin Wihlborg | A. Broyl | A. Sud | S. Kimber | Giulia Orlando | O. Bandapalli | N. F. Andersen | H. Brenner | Ana Vega | A. Razack | Anna‐Karin Wihlborg | D. E. Neal | Judith A. Clements | Jong Y. Park | Brian E. Christopher A. Sara Fredrick R. Ali Amin Al Son Henderson Haiman Benlloch Schumacher Olama | Sonja I. Berndt | C. Haiman | J. Mitchell | H. Pandha | Yong-jie Lu | G. Cancel‐Tassin | Britta Halvarsson | B. Walker | R. Hamilton | D. Neal | A. Olama | A. A. A. Olama | B. Henderson | G. Jackson | M. Teixeira | Lisa F. Newcomb
[1] S. Chanock,et al. Division of Cancer Epidemiology and Genetics , 2020, Definitions.
[2] K. D. Sørensen,et al. Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma , 2019, Nature Communications.
[3] Nilanjan Chatterjee,et al. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.
[4] H. Goldschmidt,et al. Genetic Predisposition to Multiple Myeloma at 5q15 Is Mediated by an ELL2 Enhancer Polymorphism , 2017, Cell reports.
[5] N. Chatterjee,et al. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits and implications for the future , 2017, bioRxiv.
[6] T. Golub,et al. Direct evidence for a polygenic etiology in familial multiple myeloma. , 2017, Blood advances.
[7] E. Skordalakes,et al. Structural and functional analysis of the human POT1-TPP1 telomeric complex , 2017, Nature Communications.
[8] Doug Speed,et al. Re-evaluation of SNP heritability in complex human traits , 2016, Nature Genetics.
[9] H. Goldschmidt,et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression , 2016, Nature Communications.
[10] Alfonso Valencia,et al. The BLUEPRINT Data Analysis Portal. , 2016, Cell systems.
[11] Jonathan M. Cairns,et al. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.
[12] Dennis J. Hazelett,et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.
[13] J. Witte,et al. A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci , 2016, Cancer Epidemiology, Biomarkers & Prevention.
[14] D. Gudbjartsson,et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma , 2016, Nature Communications.
[15] D. Wuttke,et al. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis , 2016, Cell reports.
[16] M. Yang,et al. PRR14 is a novel activator of the PI3K pathway promoting lung carcinogenesis , 2016, Oncogene.
[17] P. Visscher,et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.
[18] D. Kerr,et al. Implications of polygenic risk for personalised colorectal cancer screening. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.
[19] M. Bhasin,et al. The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival , 2015, Nature Communications.
[20] Jonathan M. Cairns,et al. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data , 2015, Genome Biology.
[21] M. Dyer,et al. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. , 2016, Blood.
[22] Tom R. Gaunt,et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel , 2015, Nature Communications.
[23] G. Morgan,et al. Implementation of genome-wide complex trait analysis to quantify the heritability in multiple myeloma , 2015, Scientific Reports.
[24] Viviana I. Risca,et al. Unraveling the 3D genome: genomics tools for multiscale exploration. , 2015, Trends in genetics : TIG.
[25] D. Gudbjartsson,et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma , 2015, Nature Communications.
[26] Jonathan M. Cairns,et al. Robust Detection of DNA Looping Interactions in Capture HiC data , 2015 .
[27] O. Stephens,et al. Genome-wide scan identifies variant in 2q12.3 associated with risk for multiple myeloma. , 2014, Blood.
[28] Aneela Majid,et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia , 2013, Nature Genetics.
[29] Thomas W. Mühleisen,et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk , 2013, Nature Genetics.
[30] L. Pelletier,et al. CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation , 2013, Current Biology.
[31] Sandy Chang. Cancer chromosomes going to POT1 , 2013, Nature Genetics.
[32] Asta Försti,et al. The CCND1 870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma , 2013, Nature Genetics.
[33] Nilanjan Chatterjee,et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies , 2013, Nature Genetics.
[34] Natalie de Souza. The ENCODE project , 2012, Nature Methods.
[35] Natalie de Souza. Genomics: The ENCODE project , 2012, Nature Methods.
[36] P. L. Bergsagel,et al. MYC addiction: a potential therapeutic target in MM. , 2012, Blood.
[37] A. Waage,et al. Addiction to c-MYC in multiple myeloma. , 2012, Blood.
[38] Swneke D. Bailey,et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.
[39] Manolis Kellis,et al. ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.
[40] Thomas W. Mühleisen,et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk , 2011, Nature Genetics.
[41] C. Carlson,et al. Principles for the post-GWAS functional characterization of cancer risk loci , 2011, Nature Genetics.
[42] P. Visscher,et al. GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.
[43] G. Morgan,et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. , 2010, Blood.
[44] D. Altshuler,et al. A map of human genome variation from population-scale sequencing , 2010, Nature.
[45] A. Morris,et al. Data quality control in genetic case-control association studies , 2010, Nature Protocols.
[46] D. Hose,et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation , 2010, Haematologica.
[47] Tariq Ahmad,et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.
[48] Christopher Gignoux,et al. The 1000 Genomes Project: new opportunities for research and social challenges , 2010, Genome Medicine.
[49] M. Jourdan,et al. APRIL and TACI interact with syndecan‐1 on the surface of multiple myeloma cells to form an essential survival loop , 2009, European journal of haematology.
[50] B. Weiss,et al. Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis , 2009, Leukemia.
[51] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[52] P. Casali,et al. HoxC4 binds to the Aicda promoter to induce AID expression, class switch DNA recombination and somatic hypermutation , 2009, Nature Immunology.
[53] Yueguo Wang,et al. Correlation of expression levels of BLyS and its receptors with multiple myeloma. , 2009, Clinical biochemistry.
[54] T. McDaneld,et al. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. , 2008, Journal of animal science.
[55] P. Schneider,et al. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. , 2008, Cytokine & growth factor reviews.
[56] Jon Wakefield,et al. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.
[57] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[58] T. Rème,et al. TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines. , 2007, Haematologica.
[59] K. Hemminki,et al. Familial risks and temporal incidence trends of multiple myeloma. , 2006, European journal of cancer.
[60] T. McDaneld,et al. Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.
[61] D. Clayton,et al. Population structure, differential bias and genomic control in a large-scale, case-control association study , 2005, Nature Genetics.
[62] V. Pantesco,et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. , 2005, Blood.
[63] R. Lutz,et al. Identification of an Sp factor-dependent promoter in GCET, a gene expressed at high levels in germinal center B cells. , 2004, Molecular immunology.
[64] B. Harder,et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. , 2004, Blood.
[65] W. Alexander,et al. The SOCS box: a tale of destruction and degradation. , 2002, Trends in biochemical sciences.
[66] N Risch,et al. The Future of Genetic Studies of Complex Human Diseases , 1996, Science.