Method of the tree number estimation in the pine stand using ALS data and true orthoimages.

Paper presents a method of estimation the number of trees and their density in Scots pine (Pinus sylvestris L.) stand based on airborne laser scanning data (ALS cloud point) and pas−sive line scanner (true orthoimage RGB/NIR). The analysis was performed on selected part of a 107−year−old stand in the Milicz Forest District (Poland). On−screen digitised shapes and centroid of crowns were used as a reference data (number of trees). Different approaches were applied for automatically determine the number of trees and their positions. The first approach, called ‘GIS watershed', was based on the canopy modelling of the ALS cloud point data. The other one, called ‘OBIA', was based on segmentation and classification of the true orthoimage (CIR). The third method – ‘data fusion' – was an integrated approach of the previous methods.. Different GIS spatial analyses were used to compare the results from all ap−proaches with the reference data. The results indicate that both datasets (ALS cloud point and true orthoimage) can be used for estimation of the number of trees in old Scots pine stand.

[1]  N. Borowiec,et al.  Generowanie numerycznych modeli powierzchni oraz terenu w Tatrach na podstawie chmury punktów z lotniczego skaningu laserowego (ALS) , 2008 .

[2]  D. Tiede,et al.  Characterising mountain forest structure using landscape metrics on LiDAR-based canopy surface models , 2008 .

[3]  Thomas Blaschke,et al.  Object-Based Image Analysis , 2008 .

[4]  Dirk Tiede,et al.  Domain-specific class modelling for one-level representation of single trees , 2008 .

[5]  Piotr Wężyk,et al.  Principles of full autonomy in image interpretation. The basic architectural design for a sequential process with image objects , 2008 .

[6]  P. Gong,et al.  Detection of individual trees and estimation of tree height using LiDAR data , 2007, Journal of Forest Research.

[7]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[8]  Juha Hyyppä,et al.  The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve , 2004 .

[9]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[10]  P. Gong,et al.  Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery , 2004 .

[11]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[12]  Skaner hiperspektralny AISA (Airborne Imaging Spectrometer for Applications) jako narzędzie pozyskiwania informacji o ekosystemie leśnym , 2003 .

[13]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[14]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[15]  K. O. Niemann,et al.  Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery , 2000 .

[16]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[17]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[18]  L. Joshua Leon,et al.  Watershed-Based Segmentation and Region Merging , 2000, Comput. Vis. Image Underst..

[19]  Tomas Brandtberg,et al.  Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis , 1998, Machine Vision and Applications.

[20]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .