Water vapor detection in the transmission spectra of HD 209458 b with the CARMENES NIR channel

Aims. We aim at detecting water vapor in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES. Methods. The water vapor absorption lines from the atmosphere of the planet are Doppler-shifted due to the large change in its radial velocity during transit. This shift is of the order of tens of km s−1, whilst the Earth’s telluric and the stellar lines can be considered quasi-static. We took advantage of this shift to remove the telluric and stellar lines using SYSREM, which performs a principal component analysis including proper error propagation. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve the information from those lines by cross-correlating the residual spectra with models of the atmospheric absorption of the planet. Results. We find a cross-correlation signal with a signal-to-noise ratio (S/N) of 6.4, revealing H2O in HD 209458 b. We obtain a net blueshift of the signal of –5.2 −1.3+2.6 km s−1 that, despite the large error bars, is a firm indication of day- to night-side winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H2O individually from the three near infrared bands covered by CARMENES. We detect H2O from its 0.96–1.06 μm band with a S/N of 5.8, and also find hints of a detection from the 1.06–1.26 μm band, with a low S/N of 2.8. No clear planetary signal is found from the 1.26–1.62 μm band. Conclusions. Our significant H2O signal at 0.96–1.06 μm in HD 209458 b represents the first detection of H2O from this band individually, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 μm bands. H2O is detected from the 0.96–1.06 μm band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter, in line with previous studies. Future data gathered at more stable conditions and with larger S/N at both optical and near-infrared wavelengths could help to characterize the presence of aerosols in HD 209458 b and other planets.

[1]  F. J. Alonso-Floriano,et al.  Detection of He I λ10830 Å absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy , 2018, Astronomy & Astrophysics.

[2]  F. J. Alonso-Floriano,et al.  Multiple water band detections in the CARMENES near-infrared transmission spectrum of HD 189733 b , 2018, Astronomy & Astrophysics.

[3]  N. Santos,et al.  Telluric correction in the near-infrared: Standard star or synthetic transmission? , 2018, Astronomy & Astrophysics.

[4]  S. Cabot,et al.  On the robustness of analysis techniques for molecular detections using high-resolution exoplanet spectroscopy , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  M. Höpfner,et al.  Aerosols and Water Ice in Jupiter’s Stratosphere from UV-NIR Ground-based Observations , 2018, The Astronomical Journal.

[6]  S. Cabot,et al.  Evidence for Multiple Molecular Species in the Hot Jupiter HD 209458b , 2018, The Astrophysical Journal.

[7]  Emilio Molinari,et al.  Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b , 2018, Nature.

[8]  D. Ehrenreich,et al.  Diagnosing aerosols in extrasolar giant planets with cross-correlation function of water bands , 2018, Astronomy & Astrophysics.

[9]  T. Henning,et al.  An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b , 2018, Nature Astronomy.

[10]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[11]  A. S. Bonomo,et al.  Exoplanet atmospheres with GIANO , 2018, Astronomy & Astrophysics.

[12]  R. P. Butler,et al.  The CARMENES search for exoplanets around M dwarfs , 2018, Astronomy & Astrophysics.

[13]  T. Greene,et al.  The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval , 2017, 1803.06678.

[14]  Takayuki Kotani,et al.  High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b , 2017, 1710.05276.

[15]  Geoffrey A. Blake,et al.  Detection of Water Vapor in the Thermal Spectrum of the Non-transiting Hot Jupiter Upsilon Andromedae b , 2017, 1707.01534.

[16]  Kevin Heng,et al.  The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge , 2017, 1702.02051.

[17]  R. J. de Kok,et al.  Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b , 2017, 1701.07257.

[18]  R. MacDonald,et al.  HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water , 2017, 1701.01113.

[19]  H. Schwarz,et al.  A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets , 2016, 1612.07008.

[20]  Howard Isaacson,et al.  EVIDENCE FOR THE DIRECT DETECTION OF THE THERMAL SPECTRUM OF THE NON-TRANSITING HOT GAS GIANT HD 88133 b , 2016, 1609.09074.

[21]  D. Homeier,et al.  The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b , 2016, 1608.08593.

[22]  U. O. O. Astrophysics,et al.  The slow spin of the young sub-stellar companion GQ Lupi b and its orbital configuration , 2016, 1607.00012.

[23]  Nikku Madhusudhan,et al.  NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY , 2016, 1605.08810.

[24]  Kevin B. Stevenson,et al.  QUANTIFYING AND PREDICTING THE PRESENCE OF CLOUDS IN EXOPLANET ATMOSPHERES , 2016, 1601.03492.

[25]  R. J. de Kok,et al.  ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY , 2015, 1512.05175.

[26]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[27]  T. Louden,et al.  SPATIALLY RESOLVED EASTWARD WINDS AND ROTATION OF HD 189733b , 2015, 1511.03689.

[28]  D. Ehrenreich,et al.  Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph , 2015, 1503.05581.

[29]  Remco de Kok,et al.  Evidence against a strong thermal inversion in HD 209458b from high-dispersion spectroscopy , 2015, 1502.04713.

[30]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.

[31]  A. Burrows,et al.  UPDATED SPITZER EMISSION SPECTROSCOPY OF BRIGHT TRANSITING HOT JUPITER HD 189733b , 2014, 1410.1400.

[32]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[33]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.

[34]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[35]  D. Gojak,et al.  CRIRES+: a cross-dispersed high-resolution infrared spectrograph for the ESO VLT , 2014, Astronomical Telescopes and Instrumentation.

[36]  R. J. de Kok,et al.  Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b , 2014, 1404.3769.

[37]  T. Barman,et al.  NEAR-IR DIRECT DETECTION OF WATER VAPOR IN TAU BOÖTIS b , 2014, 1402.0846.

[38]  London,et al.  Flat-relative optimal extraction A quick and efficient algorithm for stabilised spectrographs , 2013, 1311.5263.

[39]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[40]  Simon Albrecht,et al.  Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b , 2013, 1304.4014.

[41]  R. J. de Kok,et al.  DETECTION OF MOLECULAR ABSORPTION IN THE DAYSIDE OF EXOPLANET 51 PEGASI b? , 2013, 1302.6242.

[42]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[43]  Alain Lecavelier des Etangs,et al.  Atmospheric escape from HD 189733b observed in H I Lyman-α: detailed analysis of HST/STIS September 2011 observations , 2013, 1301.6030.

[44]  M. Meneghetti,et al.  CLASH: THE ENHANCED LENSING EFFICIENCY OF THE HIGHLY ELONGATED MERGING CLUSTER MACS J0416.1−2403 , 2012, 1211.2797.

[45]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[46]  K. Menou,et al.  THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION , 2012, 1208.2274.

[47]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.

[48]  P. J. Wheatley,et al.  Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b , 2012, 1206.6274.

[49]  S. Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[50]  Drake Deming,et al.  Spitzer/MIPS 24 μm OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS , 2012, 1202.1562.

[51]  Caltech,et al.  Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy , 2012, 1201.6573.

[52]  K. Menou,et al.  A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER , 2011, 1112.1658.

[53]  Patrick G. J. Irwin,et al.  Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy , 2011, 1110.2934.

[54]  Nikole K. Lewis,et al.  DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS , 2011, 1207.5639.

[55]  B. Funke,et al.  Analysis of Titan CH4 3.3 μm upper atmospheric emission as measured by Cassini/VIMS , 2011 .

[56]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[57]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[58]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[59]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[60]  Kevin France,et al.  OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b , 2010, 1005.1633.

[61]  D. Kilkenny,et al.  UBV(RI)C JHK observations of Hipparcos-selected nearby stars , 2010 .

[62]  G. Hebrard,et al.  Evaporation of the planet HD 189733b observed in H I Lyman-α , 2010, 1003.2206.

[63]  T. Henning,et al.  τ Boötis b: Hunting for reflected starlight , 2010, 1002.1638.

[64]  T. Henning,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[65]  Michel Mayor,et al.  The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b , 2009, 0907.2956.

[66]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[67]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[68]  T. Henning,et al.  HD 75289Ab revisited - Searching for starlight reflected from a hot Jupiter , 2008, 0804.4609.

[69]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[70]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[71]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[72]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[73]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[74]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[75]  T. Henning,et al.  Transiting Extrasolar Planets Workshop , 2007 .

[76]  P. McCarthy,et al.  A Search for Lyman Break Galaxies at z > 8 in the NICMOS Parallel Imaging Survey , 2007, astro-ph/0701045.

[77]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[78]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[79]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[80]  C. Moutou,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005, astro-ph/0510119.

[81]  R. Gilliland,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005, astro-ph/0503457.

[82]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[83]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[84]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[85]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[86]  Gerhard Fischer,et al.  CRIRES: a high-resolution infrared spectrograph for ESO's VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[87]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[88]  Bernd Funke,et al.  Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling , 2002 .

[89]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[90]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[91]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[92]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[93]  J. B. Laird,et al.  The Spectroscopic Orbit of the Planetary Companion Transiting HD 209458 , 2000, The Astrophysical journal.

[94]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[95]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[96]  D. James,et al.  Probable detection of starlight reflected from the giant planet orbiting τ Boötis , 1999, Nature.

[97]  David Charbonneau,et al.  An Upper Limit on the Reflected Light from the Planet Orbiting the Star τ Bootis , 1999, astro-ph/9907195.

[98]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[99]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II - Overtone and hot bands , 1989 .

[100]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[101]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs involving 0-1 vibrational transitions and temperatures from 18 to 7000 K , 1989 .

[102]  W. W. Morgan Some Characteristics of Galaxies. , 1962 .

[103]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .