Carbohydrate microarrays: an advanced technology for functional studies of glycans.

The biological significance of glycans in the post-genomic era requires the development of new technologies to enable functional studies of carbohydrates in a high-throughput manner. Recently, carbohydrate microarrays have been exploited as an advanced technology for this purpose. Efficient immobilization methods for carbohydrate probes on the proper surface are essential for the successful fabrication of carbohydrate microarrays. Up to date, several techniques have been developed to attach simple or complex carbohydrates to a solid surface. The developed glycan microarrays have been applied for functional glycomics, drug discovery, and diagnosis. In this concept article, we discuss the progress of immobilization methods of carbohydrates on solid surfaces, their potential uses for biological research and biomedical applications, and possible solutions for some remaining challenges to improve this new technology.

[1]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[2]  M. Disney,et al.  Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins. , 2004, Chemistry.

[3]  M. Mrksich,et al.  Maleimide-Functionalized Self-Assembled Monolayers for the Preparation of Peptide and Carbohydrate Biochips† , 2003 .

[4]  Philip G. Evans,et al.  Carbohydrate‐based therapeutics , 2004, The Journal of pharmacy and pharmacology.

[5]  Denong Wang Carbohydrate microarrays : Protein microarrays , 2003 .

[6]  Peter H. Seeberger,et al.  Automated Solid-Phase Synthesis of Oligosaccharides , 2001, Science.

[7]  M. Mrksich An early taste of functional glycomics. , 2004, Chemistry & biology.

[8]  Shaoyi Liu,et al.  Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells , 2002, Nature Biotechnology.

[9]  Chi‐Huey Wong,et al.  Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. , 2000, Chemical reviews.

[10]  P. Seeberger,et al.  Kohlenhydrat-Arrays: Hilfsmittel für die Glycomik , 2002 .

[11]  Dieter Stoll,et al.  Protein microarray technology. , 2002, Frontiers in bioscience : a journal and virtual library.

[12]  Carolyn R. Bertozzi,et al.  Chemical Glycobiology , 2001, Science.

[13]  P. Seeberger,et al.  Development of an automated oligosaccharide synthesizer. , 2003, Advances in carbohydrate chemistry and biochemistry.

[14]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .

[15]  Emily A. Smith,et al.  Surface Plasmon Resonance Imaging of Transcription Factor Proteins: Interactions of Bacterial Response Regulators with DNA Arrays on Gold Films† , 2003 .

[16]  R. Oyama,et al.  In vitro protein microarrays for detecting protein‐protein interactions: Application of a new method for fluorescence labeling of proteins , 2003, Proteomics.

[17]  Yuan-chuan Lee,et al.  Carbohydrate-Protein Interactions: Basis of Glycobiology , 1995 .

[18]  R. Dwek,et al.  Glycosylation and the complement system. , 2002, Chemical reviews.

[19]  J. Mikkelsen,et al.  Sugar‐coated microarrays: A novel slide surface for the high‐throughput analysis of glycans , 2002, Proteomics.

[20]  Jiahai Lu,et al.  Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV , 2004, Physiological genomics.

[21]  Ten Feizi,et al.  Oligosaccharide microarrays to decipher the glyco code , 2004, Nature Reviews Molecular Cell Biology.

[22]  U. Wille Self-terminating, oxidative radical cyclizations: a novel reaction of acyloxyl radicals. , 2002, Journal of the American Chemical Society.

[23]  Ten Feizi,et al.  Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. , 2003, Current opinion in structural biology.

[24]  J. Hodgson,et al.  DNA chips: An array of possibilities , 1998, Nature Biotechnology.

[25]  E. Fung,et al.  Protein biochips for differential profiling. , 2001, Current opinion in biotechnology.

[26]  Nir Dotan,et al.  Intact cell adhesion to glycan microarrays. , 2003, Glycobiology.

[27]  R. Corn,et al.  Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. , 2001, Analytical chemistry.

[28]  R. T. Altstock,et al.  A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. , 2003, Glycobiology.

[29]  P. Seeberger,et al.  Carbohydrate arrays as tools for glycomics. , 2002, Angewandte Chemie.

[30]  Chi‐Huey Wong,et al.  High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. , 2004, Bioorganic & medicinal chemistry letters.

[31]  D. Burton,et al.  Covalent display of oligosaccharide arrays in microtiter plates. , 2004, Journal of the American Chemical Society.

[32]  J. Roth Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. , 2002, Chemical reviews.

[33]  G. Ramsay DNA chips: State-of-the art , 1998, Nature Biotechnology.

[34]  Injae Shin,et al.  Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. , 2004, Journal of the American Chemical Society.

[35]  Milan Mrksich,et al.  Probing Protein–Carbohydrate Interactions with Microarrays of Synthetic Oligosaccharides , 2004, Chembiochem : a European journal of chemical biology.

[36]  G. Hart,et al.  The emerging significance of O-GlcNAc in cellular regulation. , 2002, Chemical reviews.

[37]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[38]  M. Disney,et al.  Aminoglycoside microarrays to study antibiotic resistance. , 2004, Angewandte Chemie.

[39]  Milan Mrksich,et al.  Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. , 2002, Chemistry & biology.

[40]  Injae Shin,et al.  Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. , 2002, Angewandte Chemie.

[41]  Chi‐Huey Wong,et al.  Saccharide display on microtiter plates. , 2002, Chemistry & biology.

[42]  P. Seeberger,et al.  Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. , 2000, Chemical reviews.

[43]  K. Iwabuchi,et al.  GM3-enriched Microdomain Involved in Cell Adhesion and Signal Transduction through Carbohydrate-Carbohydrate Interaction in Mouse Melanoma B16 Cells* , 1998, The Journal of Biological Chemistry.

[44]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[45]  David R Walt,et al.  Encoded fiber-optic microsphere arrays for probing protein-carbohydrate interactions. , 2003, Angewandte Chemie.

[46]  Enrique A Dalmasso,et al.  Current achievements using ProteinChip Array technology. , 2002, Current opinion in chemical biology.

[47]  Ten Feizi,et al.  Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions , 2002, Nature Biotechnology.

[48]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[49]  M. Mrksich,et al.  Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. , 2002, Angewandte Chemie.

[50]  Laura L Kiessling,et al.  Surface plasmon resonance imaging studies of protein-carbohydrate interactions. , 2003, Journal of the American Chemical Society.

[51]  B. Fenderson,et al.  Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. , 1989, The Journal of biological chemistry.