Aggregation of Nonparametric Estimators for Volatility Matrix

An aggregated method of nonparametric estimators based on time-domain and state-domain estimators is proposed and studied. To attenuate the curse of dimensionality, we propose a factor modeling strategy. We first investigate the asymptotic behavior of nonparametric estimators of the volatility matrix in the time domain and in the state domain. Asymptotic normality is separately established for nonparametric estimators in the time domain and state domain. These two estimators are asymptotically independent. Hence, they can be combined, through a dynamic weighting scheme, to improve the efficiency of volatility matrix estimation. The optimal dynamic weights are derived, and it is shown that the aggregated estimator uniformly dominates volatility matrix estimators using time-domain or state-domain smoothing alone. A simulation study, based on an essentially affine model for the term structure, is conducted, and it demonstrates convincingly that the newly proposed procedure outperforms both time- and state-domain estimators. Empirical studies further endorse the advantages of our aggregated method.

[1]  S. Chen,et al.  A Test for model specification of diffusion processes , 2007, math/0702123.

[2]  Jianqing Fan,et al.  Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation , 2005, math/0506029.

[3]  N. Wermuth,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[4]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[5]  V. Spokoiny,et al.  Statistical inference for time-inhomogeneous volatility models , 2004, math/0406430.

[6]  Patrick Cheridito,et al.  Market price of risk speci-fications for a ne models: theory and evidence , 2004 .

[7]  Patrick Cheridito,et al.  Market Price of Risk Specifications for Affine Models: Theory and Evidence , 2003 .

[8]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[9]  Jianqing Fan,et al.  Time-dependent Diffusion Models for Term Structure Dynamics and the Stock Price Volatility , 2003 .

[10]  A. Dalalyan,et al.  Asymptotically Efficient Estimation of the Derivative of the Invariant Density , 2003 .

[11]  Z. Cai,et al.  Nonparametric Methods in Continuous-Time Finance: A Selective Review , 2003 .

[12]  M. Hoffmann,et al.  Nonparametric estimation of scalar diffusions based on low frequency data , 2002, math/0503680.

[13]  Yacine Ait-Sahalia,et al.  The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .

[14]  E. Gobet LAN property for ergodic diffusions with discrete observations , 2002 .

[15]  Peter C. B. Phillips,et al.  Fully Nonparametric Estimation of Scalar Diffusion Models , 2001 .

[16]  Helmut Herwartz,et al.  Time Inhomogeneous Multiple Volatility Modeling , 2003 .

[17]  G. Duffee Term premia and interest rate forecasts in affine models , 2000 .

[18]  Non‐parametric Kernel Estimation of the Coefficient of a Diffusion , 2000 .

[19]  Michael Sørensen,et al.  Estimating equations based on eigenfunctions for a discretely observed diffusion process , 1999 .

[20]  L. Hansen,et al.  Spectral methods for identifying scalar diffusions , 1998 .

[21]  M. Arfi Non‐parametric Variance Estimation from Ergodic Samples , 1998 .

[22]  P. Robinson,et al.  Large-Sample Inference for Nonparametric Regression with Dependent Errors - (Now published in 'Annals of Statistics', 28 (1997), pp.2054-2083.) , 1997 .

[23]  G. J. Jiang,et al.  A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model , 1997, Econometric Theory.

[24]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[25]  D. Duffie,et al.  A Yield-factor Model of Interest Rates , 1996 .

[26]  Yacine Aït-Sahalia Nonparametric Pricing of Interest Rate Derivative Securities , 1995 .

[27]  Dean P. Foster,et al.  Continuous Record Asymptotics for Rolling Sample Variance Estimators , 1994 .

[28]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[29]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[30]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[31]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[32]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[33]  G. Banon Nonparametric Identification for Diffusion Processes , 1978 .