Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear hyperbolic equations

Abstract Unconditional superconvergence analysis for nonlinear hyperbolic equations with bilinear finite element is studied. A linearized Galerkin finite element method (FEM) is developed and a time-discrete system is established to split the error into two parts which are called the temporal error and the spatial error, respectively. On one hand, a rigorous analysis for the regularity of the time-discrete system is presented based on the temporal error estimation skillfully. On the other hand, the numerical solution ‖ U h n ‖ 0 , ∞ + ‖ ∂ t U h n ‖ 0 , ∞ is bounded by the spatial error which is deduced with the help of the Ritz projection operator. The superclose and global superconvergence estimates of u with order O ( h 2 + τ 2 ) in H 1 -norm are derived without any restriction of τ through the relationship between the interpolation operator and the Ritz projection operator. At last, numerical results are provided to confirm the theoretical analysis. Here, h is the subdivision parameter, and τ , the time step.

[1]  Jr. H. H. Rachford Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .

[2]  Dongyang Shi,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..

[3]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[4]  D. Shi,et al.  Superconvergence analysis of the finite element method for nonlinear hyperbolic equations with nonlinear boundary condition , 2008 .

[5]  Luming Zhang,et al.  New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..

[6]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[7]  Wei Liu,et al.  A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations , 2010, J. Comput. Appl. Math..

[8]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[9]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[10]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[11]  Mitchell Luskin,et al.  A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .

[12]  Yirang Yuan,et al.  Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems , 2009, Comput. Math. Appl..

[13]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[14]  Wei Gong,et al.  A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term , 2015, Math. Comput. Simul..

[15]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[16]  Haiming Gu,et al.  Characteristic finite element methods for nonlinear Sobolev equations , 1999, Appl. Math. Comput..

[17]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[18]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[19]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[20]  Dongyang Shi,et al.  Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .

[21]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[22]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[23]  Mauro Antonio Rincon,et al.  Numerical analysis and simulation for a nonlinear wave equation , 2016, J. Comput. Appl. Math..

[24]  BIYUE LIU,et al.  The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[25]  Zhaojie Zhou,et al.  An -Galerkin Expanded Mixed Finite Element Approximation of Second-Order Nonlinear Hyperbolic Equations , 2013 .

[26]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .

[27]  Xin Liao,et al.  Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..

[28]  Yunqing Huang,et al.  The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .