Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear hyperbolic equations
暂无分享,去创建一个
[1] Jr. H. H. Rachford. Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .
[2] Dongyang Shi,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..
[3] Weiwei Sun,et al. A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..
[4] D. Shi,et al. Superconvergence analysis of the finite element method for nonlinear hyperbolic equations with nonlinear boundary condition , 2008 .
[5] Luming Zhang,et al. New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..
[6] J. Koenderink. Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.
[7] Wei Liu,et al. A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations , 2010, J. Comput. Appl. Math..
[8] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[9] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[10] Huadong Gao,et al. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..
[11] Mitchell Luskin,et al. A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .
[12] Yirang Yuan,et al. Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems , 2009, Comput. Math. Appl..
[13] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[14] Wei Gong,et al. A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term , 2015, Math. Comput. Simul..
[15] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[16] Haiming Gu,et al. Characteristic finite element methods for nonlinear Sobolev equations , 1999, Appl. Math. Comput..
[17] Qun Lin,et al. Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .
[18] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[19] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[20] Dongyang Shi,et al. Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .
[21] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[22] Weiwei Sun,et al. Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..
[23] Mauro Antonio Rincon,et al. Numerical analysis and simulation for a nonlinear wave equation , 2016, J. Comput. Appl. Math..
[24] BIYUE LIU,et al. The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[25] Zhaojie Zhou,et al. An -Galerkin Expanded Mixed Finite Element Approximation of Second-Order Nonlinear Hyperbolic Equations , 2013 .
[26] Shi Dong-yang,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .
[27] Xin Liao,et al. Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..
[28] Yunqing Huang,et al. The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .