Estimation of multiscale neurophysiologic parameters by electroencephalographic means

It is shown that new model‐based electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG generation in ways that are complementary to and consistent with standard physiologic techniques. This is done by isolating parameter ranges that give good matches between model predictions and a variety of experimental EEG‐related phenomena simultaneously. Resulting constraints range from the submicrometer synaptic level to length scales of tens of centimeters, and from timescales of around 1 ms to 1 s or more, and are found to be consistent with independent physiologic and anatomic measures. In the process, a new method of obtaining model parameters from the data is developed, including a Monte Carlo implementation for use when not all input data are available. Overall, the approaches used are complementary to other methods, constraining allowable parameter ranges in different ways and leading to much tighter constraints overall. EEG methods often provide the most restrictive individual constraints. This approach opens a new, noninvasive window on quantitative brain analysis, with the ability to monitor temporal changes, and the potential to map spatial variations. Unlike traditional phenomenologic quantitative EEG measures, the methods proposed here are based explicitly on physiology and anatomy. Hum. Brain Mapping 23:53–72, 2004. © 2004 Wiley‐Liss, Inc.

[1]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[3]  Shaul Hestrin,et al.  Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons , 1993, Neuron.

[4]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[5]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[6]  F. L. D. Silva,et al.  Dynamics of the human alpha rhythm: evidence for non-linearity? , 1999, Clinical Neurophysiology.

[7]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[8]  Walter J. Freeman,et al.  TUTORIAL ON NEUROBIOLOGY: FROM SINGLE NEURONS TO BRAIN CHAOS , 1992 .

[9]  M. Steriade,et al.  Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[11]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Robinson,et al.  Mechanisms of cortical electrical activity and emergence of gamma rhythm. , 2000, Journal of theoretical biology.

[13]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[14]  G. Barrionuevo,et al.  Evidence for two types of firing pattern during the sleep-waking cycle in the reticular thalamic nucleus of the cat , 1981, Experimental Neurology.

[15]  CE Jahr,et al.  NMDA channel behavior depends on agonist affinity , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  W. Singer,et al.  The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus , 1977, Brain Research.

[17]  M. Poulter,et al.  Recombinant GABAA receptor desensitization: the role of the gamma 2 subunit and its physiological significance. , 1996, The Journal of physiology.

[18]  D. McCormick,et al.  The Functional Influence of Burst and Tonic Firing Mode on Synaptic Interactions in the Thalamus , 1998, The Journal of Neuroscience.

[19]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[20]  T. Sejnowski,et al.  Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations , 2001 .

[21]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[22]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[23]  M. Breakspear Nonlinear phase desynchronization in human electroencephalographic data , 2002, Human brain mapping.

[24]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[25]  E. G. Jones,et al.  Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat , 1999, The Journal of comparative neurology.

[26]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. , 1997, Cerebral cortex.

[27]  P A Robinson,et al.  Wave-number spectrum of electrocorticographic signals. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Carol M. Petito The Synaptic Organization of the Brain, 4th Ed , 1998 .

[29]  J. Deuchars,et al.  Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. , 1996, The Journal of physiology.

[30]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[31]  D Contreras,et al.  Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. , 1996, The Journal of physiology.

[32]  D B Lindsley,et al.  BRAIN POTENTIALS IN CHILDREN AND ADULTS. , 1969, Science.

[33]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[34]  Peter A. Robinson,et al.  Unified neurophysical model of EEG spectra and evoked potentials , 2002, Biological Cybernetics.

[35]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[36]  F. H. Lopes da Silva,et al.  Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. , 1980, Electroencephalography and clinical neurophysiology.

[37]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[38]  G Oakson,et al.  Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  R. Nicoll,et al.  Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices , 1990, Neuron.

[40]  L. Garey Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. By V. BRAITENBERG and A. SCHÜZ. (Pp. xiii+249; 90 figures; ISBN 3 540 63816 4). Berlin: Springer. 1998. , 1999 .

[41]  E. G. Jones,et al.  Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus , 1995, The Journal of comparative neurology.

[42]  Donald L Rowe,et al.  Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. , 2004, Journal of theoretical biology.

[43]  Peter N. Robinson,et al.  STEADY STATES AND GLOBAL DYNAMICS OF ELECTRICAL ACTIVITY IN THE CEREBRAL CORTEX , 1998 .

[44]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[45]  C. Koch,et al.  The action of the corticofugal pathway on sensory thalamic nuclei: A hypothesis , 1987, Neuroscience.

[46]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[47]  D. Long,et al.  The Intact and Sliced Brain. , 2002 .

[48]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[49]  A. Destexhe,et al.  Cortical Feedback Controls the Frequency and Synchrony of Oscillations in the Visual Thalamus , 2000, The Journal of Neuroscience.

[50]  R. Whitehouse,et al.  Neurophysical Modeling of Brain Dynamics , 2003, Neuropsychopharmacology.

[51]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  R. Whitehouse,et al.  Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[54]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[55]  P. Nunez Toward a quantitative description of large-scale neocortical dynamic function and EEG , 2000, Behavioral and Brain Sciences.

[56]  A. Coenen Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: Implications for information processing , 1995, Neuroscience & Biobehavioral Reviews.

[57]  P. Nunez Wavelike Properties of the Alpha Rhythm , 1974 .

[58]  P. Nunez,et al.  Spatial filtering and neocortical dynamics: estimates of EEG coherence , 1998, IEEE Transactions on Biomedical Engineering.

[59]  P. Robinson,et al.  Neurophysical theory of coherence and correlations of electroencephalographic and electrocorticographic signals. , 2003, Journal of theoretical biology.

[60]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[61]  A. Zador,et al.  Thalamocortical Synapses Sparse but Stentorian , 1999, Neuron.

[62]  P A Robinson,et al.  Wave-number spectrum of electroencephalographic signals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[64]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[65]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[67]  J. Bellanger,et al.  Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG , 2001, Clinical Neurophysiology.

[68]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[69]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[70]  D. Lindsley,et al.  A Longitudinal Study of the Occipital Alpha Rhythm in Normal Children: Frequency and Amplitude Standards , 1939 .

[71]  J. R. Smith The Frequency Growth of the Human Alpha Rhythms During Normal Infancy and Childhood , 1941 .

[72]  J. J. Wright,et al.  Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex , 1999, Biological Cybernetics.

[73]  James J. Wright,et al.  Effects of local feedback on dispersion of electrical waves in the cerebral cortex , 1999 .

[74]  P A Robinson,et al.  Unifying and interpreting the spectral wavenumber content of EEGs, ECoGs, and ERPs. , 2004, Journal of theoretical biology.

[75]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[76]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[77]  M. Steriade,et al.  Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[79]  G Rizzolatti,et al.  Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats , 1970, The Journal of physiology.

[80]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .