REST-FRAME UV–OPTICALLY SELECTED GALAXIES AT 2.3 ≲ z ≲ 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES

A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively evolving galaxies (PEGs) at 2.3 ≲ z ≲ 3.5 by using rest-frame UV–optical (V − J versus J − L) colors. The criteria are thoroughly tested with theoretical stellar population synthesis models and real galaxies with spectroscopic redshifts to evaluate their efficiency and contamination. We apply the well-tested VJL criteria to the HST/WFC3 Early Release Science field and study the physical properties of selected galaxies. The redshift distribution of selected SFGs peaks at z ∼ 2.7, slightly lower than that of Lyman break galaxies at z ∼ 3. Comparing the observed mid-infrared fluxes of selected galaxies with the prediction of pure stellar emission, we find that our VJL method is effective at selecting massive dusty SFGs that are missed by the Lyman break technique. About half of the star formation in massive (Mstar > 1010 M☉) galaxies at 2.3 ≲ z ≲ 3.5 is contributed by dusty (extinction E(B − V) > 0.4) SFGs, which, however, only account for ∼20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z ∼ 2.5. We find six PEG candidates at z > 3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z ∼ 3, implying that these types of galaxies began to form their stars at z ≳ 5. We measure the integrated stellar mass density (ISMD) of PEGs at z ∼ 2.5 and set constraints on it at z > 3. We find that the ISMD grows by at least about a factor of 10 in 1 Gyr at 3 < z <5 and by another factor of 10 in the next 3.5 Gyr (1 < z < 3).

[1]  D. H. Hughes,et al.  Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE – II. Redshift distribution and nature of the submillimetre galaxy population , 2011, 1109.6286.

[2]  Tucson,et al.  THE RELATIVE ABUNDANCE OF COMPACT AND NORMAL MASSIVE EARLY-TYPE GALAXIES AND ITS EVOLUTION FROM REDSHIFT z ∼ 2 TO THE PRESENT , 2011, 1106.4308.

[3]  Caltech,et al.  Dust-obscured star formation and the contribution of galaxies escaping UV/optical color selections at z~2 , 2011, 1106.0498.

[4]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[5]  Davis,et al.  A CENSUS OF STAR-FORMING GALAXIES AT z = 1–3 IN THE SUBARU DEEP FIELD , 2011, 1104.5019.

[6]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[7]  Garching,et al.  THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY , 2011, 1103.2570.

[8]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[9]  G. D. Illingworth,et al.  ACTIVE AND PASSIVE GALAXIES AT z ∼ 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3 , 2010, 1007.2422.

[10]  H. Ferguson,et al.  THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY , 2010, 1010.1966.

[11]  M. Nonino,et al.  A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES , 2010, 1009.3504.

[12]  Garth D. Illingworth,et al.  THE MOST MASSIVE GALAXIES AT 3.0 ⩽ z < 4.0 IN THE NEWFIRM MEDIUM-BAND SURVEY: PROPERTIES AND IMPROVED CONSTRAINTS ON THE STELLAR MASS FUNCTION , 2010, 1009.0269.

[13]  A. Cimatti,et al.  Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.

[14]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[15]  L. Cowie,et al.  ULTRADEEP KS IMAGING IN THE GOODS-N , 2010, 1002.1892.

[16]  M. Nonino,et al.  The Great Observatories Origins Deep Survey ? VLT/ISAAC Near-Infrared Imaging of the GOODS-South Field , 2009, 0912.1306.

[17]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[18]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[19]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[20]  S. Wuyts,et al.  THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5 , 2009, 0909.0750.

[21]  A. Grazian,et al.  DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS, , 2009, 0906.4250.

[22]  A. Fontana,et al.  A comprehensive study of large-scale structures in the GOODS-SOUTH field up to z ∼ 2.5 , 2009, 0903.3952.

[23]  A. Fontana,et al.  Uncertainties and Systematic Effects on the estimate of stellar masses in high z galaxies , 2009, 0901.3540.

[24]  A. Cimatti,et al.  Searching for massive galaxies at z ≥ 3.5 in GOODS-North , 2009, 0901.3341.

[25]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[26]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[27]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[28]  Astronomy,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z ~ 2 , 2008, 0803.0763.

[29]  H. Ferguson,et al.  A Population of Massive and Evolved Galaxies at z ≳ 5 , 2007, 0710.0406.

[30]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[31]  Casey Papovich,et al.  TFIT: A Photometry Package Using Prior Information for Mixed‐Resolution Data Sets , 2007 .

[32]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[33]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals , 2007, 0706.1246.

[34]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[35]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[36]  C. Conselice,et al.  The colour selection of distant galaxies in the UKIDSS Ultra Deep Survey Early Data Release , 2007, 0704.2136.

[37]  A. Fontana,et al.  A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample , 2007 .

[38]  A. Cimatti,et al.  Unveiling the oldest and most massive galaxies at very high redshift , 2007, astro-ph/0703276.

[39]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[40]  J. Dunlop,et al.  A systematic search for very massive galaxies at z > 4 , 2006, astro-ph/0606192.

[41]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[42]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[43]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .

[44]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[45]  U. Toronto,et al.  The Link between Submillimetre Galaxies and Luminous Ellipticals: Near-Infrared IFU Spectroscopy of Submillimetre Galaxies , 2006, astro-ph/0606372.

[46]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[47]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[48]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[49]  A. Cimatti,et al.  A Wide Area Survey for High-Redshift Massive Galaxies. I. Number Counts and Clustering of BzKs and EROs , 2005, astro-ph/0510299.

[50]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[51]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[52]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[53]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[54]  S. M. Fall,et al.  Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.

[55]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[56]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[57]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[58]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[59]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[60]  P. McCarthy Eros and Faint Red Galaxies , 2004 .

[61]  P. P. van der Werf,et al.  A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample , 2004, astro-ph/0408077.

[62]  I. Hook,et al.  A high abundance of massive galaxies 3–6 billion years after the Big Bang , 2004, Nature.

[63]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[64]  J. Rhoads,et al.  Identifying High-Redshift Active Galactic Nuclei Using X-Ray Hardness , 2004, astro-ph/0405499.

[65]  A. Cimatti,et al.  The K20 survey. VI. The distribution of the stellar masses in galaxies up to z 2 , 2004, astro-ph/0405055.

[66]  P. P. van der Werf,et al.  Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies , 2004, astro-ph/0404471.

[67]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[68]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[69]  B. Soifer,et al.  Optical Spectroscopy of K-Selected Extremely Red Galaxies , 2003, astro-ph/0312142.

[70]  S. Ravindranath,et al.  Observing the Formation of the Hubble Sequence in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309039.

[71]  A. Cimatti,et al.  Near-Infrared Bright Galaxies at z ≃ 2. Entering the Spheroid Formation Epoch? , 2003, astro-ph/0308456.

[72]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[73]  Omar Almaini,et al.  The nature, evolution, clustering and X-ray properties of extremely red galaxies in the Chandra Deep Field South/Great Observatories Origins Deep Survey field , 2003 .

[74]  A. Cimatti,et al.  The manifold spectra and morphologies of EROs , 2003, astro-ph/0310742.

[75]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[76]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[77]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[78]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[79]  P. P. van der Werf,et al.  Spectroscopic Confirmation of a Substantial Population of Luminous Red Galaxies at Redshifts z ≳ 2 , 2003, astro-ph/0303166.

[80]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[81]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[82]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[83]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[84]  A. Comastri,et al.  The 2-10 keV luminosity as a Star Formation Rate indicator , 2002, astro-ph/0202241.

[85]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[86]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[87]  J. Dunlop,et al.  The clustering, number counts and morphology of extremely red (R − K > 5) galaxies to K 21 , 2002, astro-ph/0205259.

[88]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[89]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[90]  A. Cimatti,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001, astro-ph/0111527.

[91]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[92]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[93]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. XIV. Galaxy Morphology in the Hubble Deep Field (North) and Its Flanking Fields to z = 1.2 , 2000, astro-ph/0008051.

[94]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[95]  D. Thompson,et al.  The Surface Density of Extremely Red Objects , 1999, astro-ph/9907216.

[96]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[97]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[98]  C. Leitherer,et al.  Dust and Recent Star Formation in the Core of NGC5253 , 1997, astro-ph/9708056.

[99]  Strasbourg,et al.  A standard stellar library for evolutionary synthesis: I. calibration of theoretical spectra , 1997, astro-ph/9701019.

[100]  M. Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996, astro-ph/9604140.

[101]  M. Giavalisco,et al.  Hubble space telescope imaging of star-forming galaxies at redshifts Z>3 , 1996, astro-ph/9603062.

[102]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[103]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[104]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[105]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[106]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[107]  E. Salpeter The Luminosity function and stellar evolution , 1955 .