Dipole giant resonances in deformed heavy nuclei

The spectral distribution of isovector dipole strength is computed using the time-dependent Skyrme-Hartree-Fock method with subsequent spectral analysis. The calculations are done without any imposed symmetry restriction, allowing any nuclear shape to be dealt with. The scheme is used to study the deformation dependence of giant resonances and its interplay with Landau fragmentation (owing to 1ph states). Results are shown for the chain of Nd isotopes, superdeformed {sup 152}Dy, triaxial {sup 188}Os, and {sup 238}U.

[1]  A. S. Umar,et al.  Nuclear shape-isomeric vibrations , 1986 .

[2]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[3]  Norman Austern,et al.  Unified Theory of Nuclear Models and Forces , 1972 .

[4]  M. S. Weiss,et al.  Three-dimensional time-dependent Hartree-Fock calculations: Application to 16O + 16O collisions , 1978 .

[5]  P. Ottaviani,et al.  Photoreactions of 12C, 16O and 40Ca in self-consistent RPA theory: (I). The E1 and E2 giant resonances, decay on (γ, p) and (γ, n) channels , 1982 .

[6]  P. Reinhard Skyrme forces and giant resonances in exotic nuclei , 1999 .

[7]  J. Błocki,et al.  Calculations of giant resonances with time-dependent Hartree-Fock , 1979 .

[8]  C. Toepffer,et al.  Damping of giant resonances in a stochastic two-level model , 1986 .

[9]  W. Bothe,et al.  Atomumwandlungen durchγ-Strahlen , 1937 .

[10]  S. Stringari,et al.  Lifetimes of monopole resonances in time-dependent Hartree-Fock theory , 1987 .

[11]  Hamamoto,et al.  Neutron skin of nuclei near the neutron drip line. , 1995, Physical review. C, Nuclear physics.

[12]  G. Colò,et al.  Damping of giant resonances due to particle–phonon coupling , 2001 .

[13]  P. Reinhard,et al.  A separable approach to linear response in Na clusters , 1997 .

[14]  R. Broglia,et al.  Damping of nuclear excitations , 1983 .

[15]  B. L. Berman,et al.  Atlas of photoneutron cross sections obtained with monoenergetic photons. Second edition , 1974 .

[16]  S. Stringari,et al.  Damping of monopole vibrations in time-dependent Hartree-Fock theory , 1979 .

[17]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[18]  J. Stone,et al.  Nuclear matter and neutron-star properties calculated with the Skyrme interaction , 2003 .

[19]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[20]  P. Reinhard,et al.  Separable random phase approximation for self-consistent nuclear models , 2002 .

[21]  B. L. Berman,et al.  Measurements of the giant dipole resonance with monoenergetic photons , 1975 .

[22]  Paul-Gerhard Reinhard,et al.  Nuclear effective forces and isotope shifts , 1995 .

[23]  William H. Press,et al.  Numerical recipes , 1990 .

[24]  O. Bohigas,et al.  Sum Rules for Nuclear Collective Excitations , 1979 .

[25]  Paul-Gerhard Reinhard,et al.  Introduction to Cluster Dynamics , 2003 .

[26]  P. Reinhard,et al.  A microscopic study of the dipole giant resonance in fissioning nuclei , 1978 .

[27]  R. Schaeffer,et al.  A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities , 1998 .

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  Paul-Gerhard Reinhard,et al.  Comparison of coordinate-space techniques in nuclear mean-field calculations , 1992 .

[30]  H. Müller,et al.  Oscillations in Finite Quantum Systems , 1995 .

[31]  J. Stroth,et al.  Photoneutron cross sections for unstable neutron-rich oxygen isotopes. , 2001, Physical review letters.

[32]  S. Stringari,et al.  Sum rules and giant resonances in nuclei , 1989 .

[33]  S. Koonin,et al.  Computational Nuclear Physics 1: Nuclear Structure , 1992 .

[34]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[35]  J. Speth,et al.  Theory of Giant Resonances , 1982 .

[36]  H. Sagawa,et al.  Isovector properties of Skyrme-type effective interactions , 1995 .

[37]  Mean field studies of exotic nuclei , 1994, nucl-th/9410034.

[38]  M. Danos On the long-range correlation model of the photonuclear effect , 1958 .

[39]  Girod,et al.  Hartree-Fock-Bogoliubov predictions for shape isomerism in nonfissile even-even nuclei. , 1989, Physical review letters.

[40]  C. Simenel,et al.  Nonlinear vibrations in nuclei , 2003 .

[41]  A. Klein Nuclear collective motion. , 1980, Science.

[42]  Paul-Gerhard Reinhard,et al.  Spectral Signals from Electronic Dynamics in Sodium Clusters , 1997 .

[43]  Paul-Gerhard Reinhard,et al.  From sum rules to RPA: 1. Nuclei , 1992 .