Si-CMOS compatible materials and devices for mid-IR microphotonics

CMOS compatible mid-Infrared (mid-IR) microphotonics including (1) broadband SOUP (Silicon on Oxide Undercladding Pedestal) waveguides; and (2) mid-IR transparent chalcogenide glass (ChGs) waveguides monolithically integrated with a PbTe thin film photodetector; are demonstrated. Using a pedestal undercladding geometry we obtain an optical loss for our Si waveguide which is 10 dB/cm lower compared to other waveguides using planar SiO2 cladding at λ = 5 µm, and a fundamental mode is seen over a broad mid-IR spectral range. To realize a fully integrated mid-IR on-chip system, in parallel, we develop PbTe thin film detectors that can be deposited on various mid-IR platforms through a thermal evaporation technique, offering high photoresponsivity of 25 V/W from λ = 1 µm to 4 µm. The detector can be efficiently integrated, using a suitable spacer, to an underlying Chalcogenide glass (ChGs) waveguide. Our results of low loss waveguides and integrated thin film detectors enable Si-CMOS microphotonics for mid-IR applications.

[1]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[2]  Jing Liu,et al.  Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography. , 2012, Lab on a chip.

[3]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[4]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[5]  J. C. Slater Barrier Theory of the Photoconductivity of Lead Sulfide , 1956 .

[6]  Pao Tai Lin,et al.  Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. , 2013, Optics letters.

[7]  Pao Tai Lin,et al.  Low‐Stress Silicon Nitride Platform for Mid‐Infrared Broadband and Monolithically Integrated Microphotonics , 2013 .

[8]  Juejun Hu,et al.  Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study , 2011 .

[9]  D. Moss,et al.  Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. , 2011, Optics express.

[10]  Milan M. Milosevic,et al.  Silicon waveguides and devices for the mid-infrared , 2012 .

[11]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[12]  M. Packirisamy,et al.  Integrated microfluidic biophotonic chip for laser induced fluorescence detection , 2010, Biomedical microdevices.

[13]  Pao Tai Lin,et al.  Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides. , 2013, Lab on a chip.

[14]  Richard L. Petritz,et al.  Theory of Photoconductivity in Semiconductor Films , 1956 .

[15]  S. Krimm,et al.  Infrared spectra of high polymers: Part IX. Polyethylene terephthalate , 1959 .

[16]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[17]  Juejun Hu,et al.  Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon , 2012 .

[18]  William Headley,et al.  Silicon photonic waveguides for mid- and long-wave infrared region , 2009 .

[19]  Yinlei Hao,et al.  Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides. , 2011, Optics express.

[20]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[21]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[22]  Graham T. Reed,et al.  Freestanding waveguides in silicon , 2007 .

[23]  T. Fromherz,et al.  Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters , 2006 .

[24]  Stephen Kozacik,et al.  Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. , 2013, Optics letters.

[25]  Pao Tai Lin,et al.  Planar silicon nitride mid-infrared devices , 2013 .

[26]  Juejun Hu,et al.  Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films , 2008 .

[27]  A. Rogalski Infrared detectors: status and trends , 2003 .

[28]  Muthukumaran Packirisamy,et al.  Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection. , 2012, Journal of biomedical optics.

[29]  Michal Lipson,et al.  Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[30]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[31]  Gunther Roelkens,et al.  Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip. , 2012, Optics express.