Variational tetrahedral meshing

In this paper, a novel Delaunay-based variational approach to isotropic tetrahedral meshing is presented. To achieve both robustness and efficiency, we minimize a simple mesh-dependent energy through global updates of both vertex positions and connectivity. As this energy is known to be the ∠1 distance between an isotropic quadratic function and its linear interpolation on the mesh, our minimization procedure generates well-shaped tetrahedra. Mesh design is controlled through a gradation smoothness parameter and selection of the desired number of vertices. We provide the foundations of our approach by explaining both the underlying variational principle and its geometric interpretation. We demonstrate the quality of the resulting meshes through a series of examples.

[1]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[2]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[3]  Jim Ruppert,et al.  A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.

[4]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[5]  Carl Ollivier-Gooch,et al.  A comparison of tetrahedral mesh improvement techniques , 1996 .

[6]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[7]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[8]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[9]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[10]  Jonathan Richard Shewchuk,et al.  A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations , 1998, SCG '98.

[11]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[12]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[13]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[14]  S. Teng,et al.  Biting: advancing front meets sphere packing , 2000 .

[15]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[16]  Shang-Hua Teng,et al.  Unstructured Mesh Generation: Theory, Practice, and Perspectives , 2000, Int. J. Comput. Geom. Appl..

[17]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000 .

[18]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[19]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[20]  Michael Ortiz,et al.  Variational Delaunay approach to the generation of tetrahedral finite element meshes , 2001 .

[21]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[22]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[23]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[24]  Mariette Yvinec,et al.  Conforming Delaunay triangulations in 3D , 2002, SCG '02.

[25]  Tamal K. Dey,et al.  Quality meshing with weighted Delaunay refinement , 2002, SODA '02.

[26]  Sheung-Hung Poon,et al.  Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio , 2003, SODA '03.

[27]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[28]  Ronald Fedkiw,et al.  A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra , 2003, IMR.

[29]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[30]  Tamal K. Dey,et al.  Quality meshing for polyhedra with small angles , 2004, SCG '04.

[31]  S. J. Owen,et al.  3D discrete skeleton generation by wave propagation on PR-octree for finite element mesh sizing , 2004, SM '04.

[32]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[33]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[34]  Leonard McMillan,et al.  Simplification and improvement of tetrahedral models for simulation , 2004, SGP '04.

[35]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[36]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[37]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..