Sol–gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity

[1]  Zhizhong Han,et al.  Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. , 2012, Journal of hazardous materials.

[2]  E. Xie,et al.  A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst. , 2012, Nanoscale.

[3]  Rong Shao,et al.  Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method , 2012 .

[4]  A. Al-Khedhairy,et al.  Fabrication, growth mechanism and antibacterial activity of ZnO micro-spheres prepared via solution process , 2012 .

[5]  S. Anandan,et al.  Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II , 2012 .

[6]  S. Jian,et al.  A CTAB-assisted hydrothermal and solvothermal synthesis of ZnO nanopowders , 2011 .

[7]  G. Kumar,et al.  Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties. , 2011, Journal of colloid and interface science.

[8]  C. Păcurariu,et al.  Aqueous combustion synthesis and characterization of ZnO powders , 2011 .

[9]  De-jun Wang,et al.  A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity , 2011 .

[10]  Sher Bahadar Khan,et al.  Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor. , 2011, Talanta.

[11]  Hui Liu,et al.  Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances , 2011 .

[12]  G. Kumar,et al.  Utilization of ZnO nanocones for the photocatalytic degradation of acridine orange. , 2011, Journal of nanoscience and nanotechnology.

[13]  Z. Fu,et al.  Shape-controlled synthesis and photocatalytic properties of three-dimensional and porous zinc oxide , 2011 .

[14]  R. Amal,et al.  Porous TiO2 with a controllable bimodal pore size distribution from natural ilmenite , 2011 .

[15]  Chuh‐Yung Chen,et al.  Construction of nanocrystalline film on nanowire array via swelling electrospun polyvinylpyrrolidone-hosted nanofibers for use in dye-sensitized solar cells. , 2010, ACS nano.

[16]  A. A. Mohamad,et al.  Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation , 2010 .

[17]  I. Yarovsky,et al.  ZnO Nanostructures for Gas Sensing: Interaction of NO2, NO, O, and N with the ZnO(101̅0) Surface , 2010 .

[18]  Jae-Young Choi,et al.  Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes , 2010, Advanced materials.

[19]  Benxia Li,et al.  Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures , 2010 .

[20]  C. H. Liu,et al.  Ultraviolet ZnO nanorod photosensors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[21]  R. Yousefi,et al.  Effect of S- and Sn-doping to the optical properties of ZnO nanobelts , 2009 .

[22]  Chung‐Hsin Lu,et al.  Influence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders , 2009 .

[23]  Lei Jin,et al.  ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity , 2009 .

[24]  Shui-Tong Lee,et al.  Synthesis, Characterization, and Photocatalytic Application of Different ZnO Nanostructures in Array Configurations , 2009 .

[25]  Carla J Spina,et al.  Cationic and anionic surface binding sites on nanocrystalline zinc oxide: surface influence on photoluminescence and photocatalysis. , 2009, Journal of the American Chemical Society.

[26]  Ji-Wook Jang,et al.  Precursor effects of citric acid and citrates on ZnO crystal formation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[27]  W. Jung,et al.  Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process , 2009 .

[28]  Ning Zhang,et al.  Selective synthesis and characterization of flower-like ZnO microstructures via a facile hydrothermal route , 2008 .

[29]  Min Chen,et al.  A facile method to fabricate ZnO hollow spheres and their photocatalytic property. , 2008, The journal of physical chemistry. B.

[30]  Chongqi Chen,et al.  Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. , 2007, Inorganic chemistry.

[31]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[32]  K. Sasaki,et al.  Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters , 2007, Science.

[33]  Y. Zaatar,et al.  Piezoelectric zinc oxide by electrostatic spray pyrolysis , 2006, Microelectron. J..

[34]  Wenqin Peng,et al.  Synthesis and Structures of Morphology-Controlled ZnO Nano- and Microcrystals , 2006 .

[35]  U. Pal,et al.  Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. , 2005, The journal of physical chemistry. B.

[36]  Deren Yang,et al.  Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process , 2005 .

[37]  Xiangyang Ma,et al.  Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process , 2005 .

[38]  Jin-Ho Choy,et al.  Hydrothermal route to ZnO nanocoral reefs and nanofibers , 2004 .

[39]  Huifang Xu,et al.  Complex and oriented ZnO nanostructures , 2003, Nature materials.

[40]  A. C. Bose,et al.  Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor , 2011 .