Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model
暂无分享,去创建一个
[1] J. C. Slater. A Simplification of the Hartree-Fock Method , 1951 .
[2] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[3] Norbert J. Mauser,et al. THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .
[4] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[5] Olivier Bokanowski,et al. LOCAL APPROXIMATION FOR THE HARTREE–FOCK EXCHANGE POTENTIAL: A DEFORMATION APPROACH , 1999 .
[6] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[7] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[8] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[9] François Golse,et al. Derivation of the Schrödinger–Poisson equation from the quantum N-body problem , 2002 .
[10] V. Bach. Accuracy of mean field approximations for atoms and molecules , 1993 .
[11] P. Dirac. Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] N. SIAMJ.. AN EXPLICIT UNCONDITIONALLY STABLE NUMERICAL METHOD FOR SOLVING DAMPED NONLINEAR SCHRÖDINGER EQUATIONS WITH A FOCUSING NONLINEARITY , 2003 .
[13] P. Miller,et al. On the semiclassical limit of the focusing nonlinear Schrödinger equation , 1998 .
[14] R. Gáspár,et al. Über eine Approximation des Hartree-Fockschen Potentials Durch eine Universelle Potentialfunktion , 1954 .
[15] Esben Skovsen,et al. Quantum state tomography of dissociating molecules. , 2003, Physical review letters.
[16] B. Herbst,et al. Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .
[17] Norbert J. Mauser,et al. Mean field dynamics of fermions and the time-dependent Hartree-Fock equation , 2002 .
[18] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[19] François Golse,et al. Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .
[20] Rémi Carles,et al. Remarques sur les mesures de Wigner , 2001 .
[21] Olivier Bokanowski,et al. Local density approximations for the energy of a periodic Coulomb model , 2003 .
[22] Ping Zhang,et al. The limit from the Schrödinger‐Poisson to the Vlasov‐Poisson equations with general data in one dimension , 2002 .
[23] H. Steinrück. The one-dimensional Wigner-Poisson problem and its relation to the Schro¨dinger-Poisson problem , 1991 .
[24] Pierre-Louis Lions,et al. Solutions of Hartree-Fock equations for Coulomb systems , 1987 .
[25] Norbert J. Mauser,et al. The Schrödinger-Poisson-X equation , 2001, Appl. Math. Lett..
[26] Hans Peter Stimming. THE IVP FOR THE SCHRÖDINGER–POISSON-Xα EQUATION IN ONE DIMENSION , 2005 .
[27] Peter A. Markowich,et al. A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..