On the construction of adjunctions between a fuzzy preposet and an unstructured set

In this work, we focus on adjunctions, also called isotone Galois connections, in the framework of fuzzy preordered sets (hereafter, fuzzy preposets). Specifically, we present necessary and sufficient conditions so that, given a mapping f:A→B from a fuzzy preposet A into an unstructured set B, it is possible to construct a suitable fuzzy preorder relation on B for which there exists a mapping g:B→A such that the pair (f,g) constitutes an adjunction.

[1]  Sergei O. Kuznetsov,et al.  Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research , 2005, Formal Concept Analysis.

[2]  Jan Konecny,et al.  Isotone fuzzy Galois connections with hedges , 2011, Inf. Sci..

[3]  Manuel Ojeda-Aciego,et al.  On the definition of suitable orderings to generate adjunctions over an unstructured codomain , 2014, Inf. Sci..

[4]  Dexue Zhang,et al.  Fuzzy Galois connections categorically , 2010, Math. Log. Q..

[5]  Wei Yao,et al.  Fuzzy Galois connections on fuzzy posets , 2009, Math. Log. Q..

[6]  James Propp,et al.  A Galois Connection in the Social Network , 2012 .

[7]  Radim Bělohlávek,et al.  Lattices of Fixed Points of Fuzzy Galois Connections , 2001 .

[8]  Radim Belohlávek,et al.  Triadic fuzzy Galois connections as ordinary connections , 2014, Fuzzy Sets Syst..

[9]  A. Frascella,et al.  Fuzzy Galois connections under weak conditions , 2011, Fuzzy Sets Syst..

[10]  Ulrich Bodenhofer,et al.  A Similarity-Based Generalization of Fuzzy Orderings Preserving the Classical Axioms , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  Bin Zhao,et al.  Kernel systems on L-ordered sets , 2011, Fuzzy Sets Syst..

[12]  Bernard De Baets,et al.  A compendium of fuzzy weak orders: Representations and constructions , 2007, Fuzzy Sets Syst..

[13]  Marcin Wolski Galois Connections and Data Analysis , 2004, Fundam. Informaticae.

[14]  Wei Yao,et al.  Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets , 2010, Fuzzy Sets Syst..

[15]  Henri Prade,et al.  Interval-Valued Fuzzy Galois Connections: Algebraic Requirements and Concept Lattice Construction , 2010, Fundam. Informaticae.

[16]  Bernard De Baets,et al.  On the existence and construction of T-transitive closures , 2003, Inf. Sci..

[17]  Andrei Popescu,et al.  Non-commutative fuzzy Galois connections , 2003, Soft Comput..

[18]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[19]  Manuel Ojeda-Aciego,et al.  On Galois Connections and Soft Computing , 2013, IWANN.

[20]  Manuel Ojeda-Aciego,et al.  On the Existence of Isotone Galois Connections between Preorders , 2014, ICFCA.

[21]  Ferdinand Börner Basics of Galois Connections , 2008, Complexity of Constraints.

[22]  Klaus Denecke,et al.  Galois connections and applications , 2004 .

[23]  Fu-Gui Shi,et al.  Quantitative domains via fuzzy sets: Part II: Fuzzy Scott topology on fuzzy directed-complete posets , 2011, Fuzzy Sets Syst..

[24]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[25]  G. Castellini,et al.  CATEGORICAL CLOSURE OPERATORS VIA GALOIS CONNECTIONS , .

[26]  Yun Shi,et al.  Fuzzy adjunctions and fuzzy morphological operations based on implications , 2009, Int. J. Intell. Syst..

[27]  David A. Schmidt,et al.  Calois Connections and Computer Science Applications , 1985, CTCS.