Towards a characterisation of Sidorenko systems
暂无分享,去创建一个
[1] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[2] David Conlon,et al. Sidorenko's conjecture for blow-ups , 2018 .
[3] B. Szegedy,et al. On the logarithimic calculus and Sidorenko's conjecture , 2011, 1107.1153.
[4] Peter J. Cameron,et al. On monochromatic solutions of equations in groups , 2007 .
[5] Common And Sidorenko Linear Equations , 2019, 1910.06436.
[6] Jeong Han Kim,et al. Two Approaches to Sidorenko's Conjecture , 2013, 1310.4383.
[7] Alexander Sidorenko,et al. A correlation inequality for bipartite graphs , 1993, Graphs Comb..
[8] W. Samotij,et al. The number of additive triples in subsets of abelian groups , 2016, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] Leo Versteegen. Linear configurations containing 4-term arithmetic progressions are uncommon , 2021 .
[10] M. Simonovits. Extremal Graph Problems , Degenerate Extremal Problems , and Supersaturated Graphs , 2010 .
[11] Vojtech Rödl,et al. On Schur Properties of Random Subsets of Integers , 1996 .
[12] Stefan A. Burr,et al. On the Ramsey multiplicities of graphs - problems and recent results , 1980, J. Graph Theory.
[13] J. Sheehan,et al. On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.
[14] The minimum number of monochromatic 4-term progressions in Z , 2009 .
[15] J. Wolf,et al. Ramsey multiplicity of linear patterns in certain finite abelian groups , 2016 .
[16] Hamed Hatami. Graph norms and Sidorenko’s conjecture , 2008, 0806.0047.
[17] Andrew Thomason. Graph products and monochromatic multiplicities , 1997, Comb..
[18] David Conlon,et al. Some advances on Sidorenko's conjecture , 2015, J. Lond. Math. Soc..
[19] D. Conlon,et al. An Approximate Version of Sidorenko’s Conjecture , 2010, 1004.4236.
[20] Tomasz Schoen. The Number of Monochromatic Schur Triples , 1999, Eur. J. Comb..
[21] David J. Galvin,et al. Three tutorial lectures on entropy and counting , 2014, 1406.7872.
[22] Doron Zeilberger,et al. A 2-Coloring of [1, N] Can Have (1/22)N2+O(N) Monochromatic Schur Triples, But Not less! , 1998, Electron. J. Comb..
[23] Andrew Thomason,et al. Multiplicities of subgraphs , 1996, Comb..