Safety assessment in development and operation of modular continuous-flow processes

Improved safety is one of the main drivers for microreactor application in chemical process development and small-scale production. Typical examples of hazardous chemistry are presented indicating potential risks also in miniaturized equipment. Energy balance and kinetic parameters describe the heat production potential and, together with heat transfer capability, the temperature development in a continuous flow reactor. Besides these calculation procedures, checklists for laboratory safety and risk assessment are the basis for improved laboratory work as well as for equipment-related safety discussions. For complete and larger chemical plants, hazard and operation (HAZOP) studies are the appropriate method of handling hazardous processes and their scale-up.

[1]  Jan Passchier,et al.  Rapid formation of amides via carbonylative coupling reactions using a microfluidic device. , 2006, Chemical communications.

[2]  Valerio Cozzani,et al.  Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry , 2016 .

[3]  Lukas Küpper,et al.  An Ozonolysis−Reduction Sequence for the Synthesis of Pharmaceutical Intermediates in Microstructured Devices , 2009 .

[4]  Jianfeng Chen,et al.  Selective absorption of H2S from a gas mixture with CO2 in a microporous tube-in-tube microchannel reactor , 2015 .

[5]  T Kitamori,et al.  Integration of a microextraction system solvent extraction of a Co-2-nitroso-5-dimethylaminophenol complex on a microchip. , 2000, Journal of chromatography. A.

[6]  T. Shimanouchi,et al.  Chemical conversion and liquid–liquid extraction of 5‐hydroxymethylfurfural from fructose by slug flow microreactor , 2016 .

[7]  Hongshuai Gao,et al.  A novel continuous re-extraction procedure of penicillin G by a micro-extractor based on ceramic membrane , 2010 .

[8]  Christian Bramsiepe,et al.  Selection of Technical Reactor Equipment for Modular, Continuous Small-Scale Plants , 2014 .

[9]  W. Tegrotenhuis,et al.  Hydrodesulfurization of JP-8 fuel and its microchannel distillate using steam reformate , 2008 .

[10]  Volker Hessel,et al.  Novel process windows for enabling, accelerating, and uplifting flow chemistry. , 2013, ChemSusChem.

[11]  Volker Hessel,et al.  Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. , 2016, Chemical reviews.

[12]  T. Bieringer,et al.  Future Production Concepts in the Chemical Industry: Modular – Small‐Scale – Continuous , 2013 .

[13]  Ronan Guevel,et al.  Semisynthetic Artemisinin, the Chemical Path to Industrial Production , 2014 .

[14]  J. Fischer,et al.  Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures , 2012 .

[15]  Kai Wang,et al.  Microflow extraction: A review of recent development , 2017 .

[16]  C. Kappe,et al.  Continuous flow synthesis of α-halo ketones: essential building blocks of antiretroviral agents. , 2014, The Journal of organic chemistry.

[17]  F. Williams Book Review: Combustion Fundamentals, by Roger A. Strehlow , 1985 .

[18]  A. Kirschning,et al.  Multiple Organolithium Generation in the Continuous Flow Synthesis of Amitriptyline , 2013 .

[19]  Zhao-Lun Fang,et al.  A microfluidic chip based liquid-liquid extraction system with microporous membrane. , 2006, Analytica chimica acta.

[20]  Ján JanoÅ¡ovský,et al.  Automated Model-based Hazop Study in Process Hazard Analysis , 2016 .

[21]  Gerhard Schembecker,et al.  Die 50 %-Idee: Modularisierung im Planungsprozess , 2012 .

[22]  Martin D. Johnson,et al.  Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions. , 2010, Green chemistry : an international journal and green chemistry resource : GC.

[23]  C. Kappe,et al.  A laboratory-scale continuous flow chlorine generator for organic synthesis , 2016 .

[24]  Pierre Trambouze,et al.  Designing a Cyclohexane Oxidation Reactor , 1974 .

[25]  Clarisse Mariet,et al.  Microfluidic Tools for the Liquid-liquid Extraction of Radionuclides in Analytical Procedures , 2012 .

[26]  V. Hessel,et al.  Hydrogen Chloride Gas in Solvent-Free Continuous Conversion of Alcohols to Chlorides in Microflow , 2016 .

[27]  Rebecca E. Meadows,et al.  Enabling the Scale-Up of a Key Asymmetric Hydrogenation Step in the Synthesis of an API Using Continuous Flow Solid-Supported Catalysis , 2016 .

[28]  Timothy F. Jamison,et al.  End-to-end continuous flow synthesis and purification of diphenhydramine hydrochloride featuring atom economy, in-line separation, and flow of molten ammonium salts , 2013 .

[29]  Steven V. Ley,et al.  Lesser-Known Enabling Technologiesfor Organic Synthesis , 2011 .

[30]  Ian R. Baxendale,et al.  The Use of Gases in Flow Synthesis , 2016 .

[31]  W. Leitner,et al.  Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium. , 2006, Chemistry.

[32]  Igor Plazl,et al.  Steroid extraction in a microchannel system--mathematical modelling and experiments. , 2007, Lab on a chip.

[33]  Steven V. Ley,et al.  Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation , 2000 .

[34]  Thongchai Srinophakun,et al.  A systematic formulation for HAZOP analysis based on structural model , 2014, Reliab. Eng. Syst. Saf..

[35]  Christian Liebner,et al.  Maximum safe diameters of microcapillaries for a stoichiometric ethene/oxygen mixture , 2009 .

[36]  Vasilis Fthenakis,et al.  Hazard and operability (HAZOP) analysis. A literature review. , 2010, Journal of hazardous materials.

[37]  Ilkka Turunen,et al.  Safety analysis of intensified processes , 2012 .

[38]  Douglas Carson,et al.  Guidance on Safety/Health for Process Intensification including MS Design; Part I: Reaction Hazards , 2009 .

[39]  Olaf Hinrichsen Technische Chemie. Von Manfred Baerns, Arno Behr, Axel Brehm, Jürgen Gmehling, Hanns Hofmann, Ulfert Onken und Albert Renken. , 2007 .

[40]  P. Seeberger,et al.  Organic Photoredox Chemistry in Flow , 2015 .

[41]  Steven V Ley,et al.  A prototype continuous-flow liquid-liquid extraction system using open-source technology. , 2012, Organic & biomolecular chemistry.

[42]  Guangsheng Luo,et al.  Hydrodynamics and Mass Transfer in a Countercurrent Multistage Microextraction System , 2016 .

[43]  C. Kappe,et al.  Direct preparation of nitriles from carboxylic acids in continuous flow. , 2013, The Journal of organic chemistry.

[44]  Norbert Kockmann,et al.  Scale-up-fähiges Equipment für die Prozessentwicklung , 2012 .

[45]  Yuchao Zhao,et al.  An Experimental Study of Copper Extraction Characteristics in a T‐Junction Microchannel , 2013 .

[46]  Paul Baybutt,et al.  A critique of the Hazard and Operability (HAZOP) study , 2015 .

[47]  Christian Bramsiepe,et al.  Planungsansatz für modulare Anlagen in der chemischen Industrie , 2017 .

[48]  Duncan Guthrie,et al.  Continuous Flow-Processing of Organometallic Reagents Using an Advanced Peristaltic Pumping System and the Telescoped Flow Synthesis of (E/Z)-Tamoxifen , 2013 .

[49]  Norbert Kockmann,et al.  Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety , 2011 .

[50]  Gerhard Schembecker,et al.  Modules in process industry − A life cycle definition , 2017 .

[51]  Götz Veser,et al.  Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor , 2001 .

[52]  Takashi Takahashi,et al.  Continuous in situ generation and reaction of phosgene in a microflow system. , 2011, Chemical communications.

[53]  P. K. Marhavilas,et al.  Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009 , 2011 .

[54]  Norbert Kockmann,et al.  Design of a Continuous Tubular Cooling Crystallizer for Process Development on Lab-Scale , 2016 .

[55]  Ravi Arora,et al.  Methanol production FPSO plant concept using multiple microchannel unit operations , 2008 .

[56]  Christian Bramsiepe,et al.  Sicherheitstechnische Aspekte bei Planung und Bau modularer Produktionsanlagen , 2015 .

[57]  David Cantillo,et al.  Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. , 2015, Angewandte Chemie.

[58]  Takehiko Kitamori,et al.  A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions , 2004, Science.

[59]  I. Mándity,et al.  Highly selective deuteration of pharmaceutically relevant nitrogen-containing heterocycles: a flow chemistry approach , 2011, Molecular Diversity.

[60]  Timothy Noël,et al.  Suzuki-Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. , 2011, Angewandte Chemie.

[61]  Faisal Khan,et al.  Methods and models in process safety and risk management: Past, present and future , 2015 .

[62]  R.W.K. Allen,et al.  Experimental demonstration of rotating spiral microchannel distillation , 2010 .

[63]  N. Kockmann,et al.  Kinetic and Scale-up Investigations of a Michael Addition in Microreactors , 2014 .

[64]  T. Fukuyama,et al.  Modernized low pressure carbonylation methods in batch and flow employing common acids as a CO source. , 2013, Organic letters.

[65]  Jinhua J. Song,et al.  Preparative Synthesis via Continuous Flow of 4,4,5,5-Tetramethyl-2-(3-trimethylsilyl-2-propynyl)-1,3,2-dioxaborolane: A General Propargylation Reagent , 2012 .

[66]  Masahiro Chiba,et al.  Spatially-Resolved Fluorescence Spectroscopic Study on Liquid/Liquid Extraction Processes in Polymer Microchannels , 2000 .

[67]  Leslaw Mleczko,et al.  Heat Management in Microreactors for Fast Exothermic Organic Syntheses—First Design Principles , 2016 .

[68]  M. Gödde,et al.  Sicherheit in der Mikroreaktionstechnik , 2009 .

[69]  J. Howard,et al.  Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination , 2011, Beilstein journal of organic chemistry.

[70]  Christian V. Stevens,et al.  A HCN-based reaction under microreactor conditions: industrially feasible and continuous synthesis of 3,4-diamino-1H-isochromen-1-ones , 2007 .

[71]  Christian Jochum,et al.  Hazard Analysis for the Evaluation of the Hazard Potential of Chemical Process Units , 2002 .

[72]  D. Roberge,et al.  Safe Generation and Synthetic Utilization of Hydrazoic Acid in a Continuous Flow Reactor , 2012, Journal of Flow Chemistry.

[73]  P. Rohr,et al.  Liquid Extraction of Vanillin in Rectangular Microreactors , 2008 .

[74]  J. Yoshida,et al.  Preparation and Use of Organolithium and Organomagnesium Species in Flow , 2015 .

[75]  V. Hessel,et al.  A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations , 2015 .

[76]  Douglas Carson,et al.  Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics , 2008 .

[77]  Franz-Josef Bock,et al.  ROGA – A New Method for Risk-Based Hazard Analysis: Part 1 – Deductive Hazard Analysis and Risk-Based Assessment by Using a Risk Graph , 2015 .

[78]  Franz-Josef Bock,et al.  ROGA – A New Method for Risk-Based Hazard Analysis: Part 2 – Semi-Quantitative Assessment and Implementation of the Hazard Analysis , 2015 .

[79]  Günter Wozny,et al.  Multikriterielle Aspekte der Modularisierung bei der Planung verfahrenstechnischer Anlagen , 2012 .

[80]  Haiyang Cheng,et al.  Oxidation of cyclohexane - A significant impact of stainless steel reactor wall , 2007 .

[81]  Wentao Zhang,et al.  Automatic HAZOP analysis method for unsteady operation in chemical based on qualitative simulation and inference , 2015 .

[82]  Gerry Steele,et al.  Continuous Crystallization of Pharmaceuticals Using a Continuous Oscillatory Baffled Crystallizer , 2009 .

[83]  Volker Hessel,et al.  Membrane microreactors: gas-liquid reactions made easy. , 2013, ChemSusChem.

[84]  Timothy Noël,et al.  Iridium(I)-Catalyzed Ortho-Directed Hydrogen Isotope Exchange in Continuous-Flow Reactors , 2015, Journal of Flow Chemistry.

[85]  C. Kappe,et al.  Continuous flow ozonolysis in a laboratory scale reactor. , 2011, Organic letters.

[86]  Claudio Battilocchio,et al.  A prototype device for evaporation in batch and flow chemical processes , 2013 .

[87]  S V Ley,et al.  Taming hazardous chemistry by continuous flow technology. , 2016, Chemical Society reviews.

[88]  A. deMello,et al.  Through-wall mass transport as a modality for safe generation of singlet oxygen in continuous flows , 2013 .

[89]  Norbert Kockmann,et al.  Sicherheitsaspekte bei der Prozessentwicklung und Kleinmengenproduktion mit Mikroreaktoren , 2012 .

[90]  Eva Roblegg,et al.  Continuous Sonocrystallization of Acetylsalicylic Acid (ASA): Control of Crystal Size , 2012 .

[91]  Ian T. Cameron,et al.  A blended hazard identification methodology to support process diagnosis , 2012 .

[92]  T. Noël Organometallic Flow Chemistry , 2016 .

[93]  David W. Agar,et al.  Liquid−Liquid Slug Flow in a Capillary: An Alternative to Suspended Drop or Film Contactors , 2007 .

[94]  R. Luque,et al.  Liquid phase oxidation chemistry in continuous-flow microreactors. , 2016, Chemical Society reviews.

[95]  Steven V Ley,et al.  Continuous multiple liquid-liquid separation: diazotization of amino acids in flow. , 2012, Organic letters.

[96]  Martina Wolter,et al.  Focussing on essential safety issues during lean development of chemical processes in the pharmaceutical industry—approach and case studies , 2008 .

[97]  Takehiko Kitamori,et al.  Countercurrent laminar microflow for highly efficient solvent extraction. , 2007, Angewandte Chemie.

[98]  Takehiko Kitamori,et al.  System for high-level radioactive waste using microchannel chip — extraction behavior of metal ions from aqueous phase to organic phase in microchannel , 2005 .

[99]  Frank Olschewski,et al.  Guidance on Safety/Health for Process Intensification Including MS Design. Part IV: Case Studies , 2010 .

[100]  T. Fukuyama,et al.  Carbonylation in microflow: close encounters of CO and reactive species , 2014 .

[101]  Ryan L Hartman,et al.  Distillation in microchemical systems using capillary forces and segmented flow. , 2009, Lab on a chip.

[102]  Volker Hessel,et al.  Solvent- and catalyst-free huisgen cycloaddition to rufinamide in flow with a greener, less expensive dipolarophile. , 2013, ChemSusChem.

[103]  Volker Hessel,et al.  Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications. , 2014, Chemistry.

[104]  G. Gigerenzer Risiko: Wie man die richtigen Entscheidungen trifft , 2013 .

[105]  Christian Liebner,et al.  Catalyst as ignition source of an explosion inside a microreactor , 2012 .

[106]  Jie Wu,et al.  Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents. , 2014, Angewandte Chemie.

[107]  Norbert Kockmann,et al.  Harsh Reaction Conditions in Continuous‐Flow Microreactors for Pharmaceutical Production , 2009 .

[108]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[109]  K. K. Hii,et al.  Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries , 2016 .

[110]  Takehiko Kitamori,et al.  On-Chip Integration of Neutral Ionophore-Based Ion Pair Extraction Reaction , 2001 .

[111]  N. Kockmann,et al.  Parametrische Empfindlichkeit einer stark exothermen Reaktion im Kapillarwendelreaktor , 2015 .

[112]  Guangwen Chen,et al.  Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors , 2013 .

[113]  Johannes Albrecht,et al.  Guidance on Safety/Health for Process Intensification Including MS Design. Part III: Risk Analysis , 2010 .

[114]  K. Jensen,et al.  Integrated continuous microfluidic liquid-liquid extraction. , 2007, Lab on a chip.

[115]  Gunther Kolb,et al.  Development of a Microrectification Apparatus for Analytical and Preparative Applications , 2012 .

[116]  Sun-Tak Hwang,et al.  Zero‐gravity distillation utilizing the heat pipe principle (micro‐distillation) , 1985 .