A Novel Rotor Configuration and Experimental Verification of Interior PM Synchronous Motor for High-Speed Applications

On account of high efficiency and high power density, permanent-magnet synchronous motors (PMSMs) are mainly applied to a high-speed machine. Especially, because of relatively easy magnetic circuit design and control, a surface-mounted PMSM of them is adopted in almost the entire high-speed applications. However, the surface-mounted PMSM has some weak points due to a sleeve, which is nonmagnetic steel used in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. The sleeve causes additional eddy current loss in the rotor besides permanent magnet and increases not only magnetic air-gap length but manufacturing costs by raw material purchase and shrink fitting. Thus, in this paper, a new rotor shape for a high-speed interior permanent-magnet synchronous motor (IPMSM) is presented in order to resolve the faults of the surface-mounted PMSM. Moreover, the amount of permanent magnet employed in the IPMSM is decreased by approximately 53% than that of the surface-mounted PMSM. Except for the rotor configuration, all design conditions of the IPMSM are identical compared with the surface-mounted PMSM. Finally, the IPMSM is fabricated, and its superiority and reliability in high-speed operation are verified by test.