Entanglement-assisted quantum codes from arbitrary binary linear codes

It is possible to construct an entanglement-assisted quantum error-correcting (EAQEC, for short) code from any classical linear code. However, the parameter of ebits $$c$$c is usually calculated by computer search. In this work, we can construct a family of $$[[2n-k, k, \ge d; c]]$$[[2n-k,k,≥d;c]] EAQEC codes from arbitrary binary $$[n, k, d]$$[n,k,d] linear codes, where the parameter of ebits $$c=2n-2k$$c=2n-2k can be easily generated algebraically and not by computational search. Moreover, the constructed EAQEC codes are maximal-entanglement EAQEC codes. We also present a different method of constructing entanglement-assisted accumulator codes. Finally, we prove that asymptotically good EAQEC codes exist.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[3]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[4]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .

[5]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[6]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[7]  Mark M. Wilde,et al.  Duality in Entanglement-Assisted Quantum Error Correction , 2013, IEEE Transactions on Information Theory.

[8]  Jianfa Qian,et al.  NONBINARY QUANTUM CODES DERIVED FROM GROUP CHARACTER CODES , 2012 .

[9]  Li-Yi Hsu,et al.  High Performance Entanglement-Assisted Quantum LDPC Codes Need Little Entanglement , 2009, IEEE Transactions on Information Theory.

[10]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[11]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[12]  Igor Devetak,et al.  Quantum Quasi-Cyclic Low-Density Parity-Check Codes , 2008 .

[13]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[14]  Vladimir D. Tonchev,et al.  Entanglement-assisted quantum low-density parity-check codes , 2010, ArXiv.

[15]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[16]  Mark M. Wilde,et al.  Dualities and identities for entanglement-assisted quantum codes , 2010, Quantum Information Processing.

[17]  Ruihu Li,et al.  Linear Plotkin bound for entanglement-assisted quantum codes , 2013 .

[18]  Ching-Yi Lai,et al.  Entanglement-Assisted Quantum Error-Correcting Codes with Imperfect Ebits , 2014 .

[19]  Jun Heo,et al.  Entanglement-assisted codeword stabilized quantum codes , 2011 .

[20]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[21]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[22]  Lina Zhang,et al.  New optimal subsystem codes , 2013, Discret. Math..

[23]  Hao Chen Some good quantum error-correcting codes from algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.

[24]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[25]  Gang Chen,et al.  Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three , 2013, Des. Codes Cryptogr..

[26]  T. Brun,et al.  Entanglement increases the error-correcting ability of quantum error-correcting codes , 2010, 1008.2598.

[27]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[28]  T. Brun,et al.  Optimal entanglement formulas for entanglement-assisted quantum coding , 2008, 0804.1404.