Versality of algebraic group actions and rational points on twisted varieties

We formalize and study several competing notions of versality for an action of a linear algebraic group on an algebraic variety X. Our main result is that these notions of versality are equivalent to various statements concerning rational points on twisted forms of X (existence of rational points, existence of a dense set of rational points, etc.) We give applications of this equivalence in both directions, to study versality of group actions and rational points on algebraic varieties. We obtain similar results on p-versality for a prime integer p. An appendix, containing a letter from J.-P. Serre, puts the notion of versality in a historical perspective.

[1]  J. Buhler,et al.  On the essential dimension of a finite group , 1997, Compositio Mathematica.

[2]  P. Brosnan The essential dimension of a g-dimensional complex abelian variety is 2g , 2007 .

[3]  A. Duncan Finite groups of essential dimension 2 , 2009, 0912.1644.

[4]  Formal algebraic spaces , 1971 .

[5]  Richard Elman,et al.  The Algebraic and Geometric Theory of Quadratic Forms , 2008 .

[6]  David A. Cox The homogeneous coordinate ring of a toric variety , 2013 .

[7]  M. Florence On the essential dimension of cyclic p-groups , 2007 .

[8]  C. U. Jensen,et al.  Generic Polynomials: Constructive Aspects of the Inverse Galois Problem , 2002 .

[9]  M. Florence Points rationnels sur les espaces homogenes et leurs compactifications , 2006 .

[10]  Zinovy Reichstein,et al.  Essential Dimensions of Algebraic Groups and a Resolution Theorem for G-Varieties , 1999, Canadian Journal of Mathematics.

[11]  Алексей Николаевич Скоробогатов,et al.  Автоморфизмы и формы торических факторов однородных пространств@@@Automorphisms and forms of toric quotients of homogeneous spaces , 2009 .

[12]  D. Saltman Generic Galois extensions and problems in field theory , 1982 .

[13]  Z. Reichstein On the notion of essential dimension for algebraic groups , 2000 .

[14]  小平 邦彦,et al.  Global analysis : papers in honor of K. Kodaira , 2015 .

[15]  J. Colliot-Thélène,et al.  La descente sur les variétés rationnelles, II , 1987 .

[16]  Alexander Duncan Essential Dimensions of A_7 and S_7 , 2009 .

[17]  F. Enriquès,et al.  Sulle irrazionalità da cui può farsi dipendere la risoluzione d'un' equazione algebricaf(xyz)=0 con funzioni razionali di due parametri , 1897 .

[18]  Ju. Manin,et al.  Rational surfaces over perfect fields , 1966 .

[19]  H. Tokunaga TWO-DIMENSIONAL VERSAL G-COVERS AND CREMONA EMBEDDINGS OF FINITE GROUPS , 2006 .

[20]  A. Skorobogatov On a theorem of Enriques - Swinnerton-Dyer , 1993 .

[21]  M. Florence,et al.  Tori and essential dimension , 2008 .

[22]  S. A. Amitsur On central division algebras , 1972 .

[23]  P. Griffiths,et al.  The intermediate Jacobian of the cubic threefold , 1972 .

[24]  A. Merkurjev ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS , 2009 .

[25]  N. Shepherd-barron,et al.  The Rationality of Quintic Del Pezzo Surfaces—A Short Proof , 1992 .

[26]  Wanshun Wong On the essential dimension of cyclic groups , 2011 .

[27]  Arnaud Beauville,et al.  On finite simple groups of essential dimension 3 , 2011 .

[28]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[29]  Jean-Pierre Tignol,et al.  The Book of Involutions , 1998 .

[30]  Yuri Prokhorov Simple finite subgroups of the Cremona group of rank 3 , 2009, 0908.0678.

[31]  Zinovy Reichstein,et al.  The essential dimension of the normalizer of a maximal torus in the projective linear group , 2008, 0809.1688.

[32]  V. Voskresenskii PROJECTIVE INVARIANT DEMAZURE MODELS , 1983 .

[33]  Adam Logan,et al.  The Kodaira dimension of moduli spaces of curves with marked points , 2001, math/0110312.

[34]  A. Grothendieck Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .

[35]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie , 1966 .

[36]  G. Berhuy,et al.  Essential dimension: A functorial point of view (after A. Merkurjev) , 2003, Documenta Mathematica.

[37]  Armand Borel Linear Algebraic Groups , 1991 .

[38]  Skip Garibaldi,et al.  Cohomological Invariants in Galois Cohomology , 2003 .

[39]  T. Browning,et al.  Local Fields , 2008 .

[40]  Z. Reichstein,et al.  Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action? , 2009, Compositio Mathematica.

[41]  A. Adler On the Automorphism Group of a Certain Cubic Threefold , 1978 .

[42]  C. Fontanari,et al.  On the rationality of moduli spaces of pointed curves , 2005, math/0504249.

[43]  Jean-Pierre Serre A Minkowski-style bound for the order of the finite subgroups of the Cremona group of rank 2 over an arbitrary field , 2009, 0903.0514.

[44]  Michel Demazure,et al.  Sous-groupes algébriques de rang maximum du groupe de Cremona , 1970 .

[45]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[46]  Nikita A. Karpenko,et al.  Essential dimension of finite p-groups , 2008 .

[47]  T. Wassmer 6 , 1900, EXILE.

[48]  David J. Saltman,et al.  Lectures on Division Algebras , 1999 .

[49]  Z. Reichstein,et al.  Reduction of structure for torsors over semilocal rings , 2007, 0710.2064.

[50]  F. Oort,et al.  Representability of group functors, and automorphisms of algebraic schemes , 1967 .

[51]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[52]  I. Dolgachev,et al.  Finite Subgroups of the Plane Cremona Group , 2006, math/0610595.

[53]  W. Schelter Non-commutative affine P. I. rings are catenary , 1978 .

[54]  Burt Totaro,et al.  The Chow ring of a classifying space , 1998, math/9802097.

[55]  E. Ballico,et al.  On the birational geometry of moduli spaces of pointed curves , 2007, math/0701475.