Versality of algebraic group actions and rational points on twisted varieties
暂无分享,去创建一个
[1] J. Buhler,et al. On the essential dimension of a finite group , 1997, Compositio Mathematica.
[2] P. Brosnan. The essential dimension of a g-dimensional complex abelian variety is 2g , 2007 .
[3] A. Duncan. Finite groups of essential dimension 2 , 2009, 0912.1644.
[4] Formal algebraic spaces , 1971 .
[5] Richard Elman,et al. The Algebraic and Geometric Theory of Quadratic Forms , 2008 .
[6] David A. Cox. The homogeneous coordinate ring of a toric variety , 2013 .
[7] M. Florence. On the essential dimension of cyclic p-groups , 2007 .
[8] C. U. Jensen,et al. Generic Polynomials: Constructive Aspects of the Inverse Galois Problem , 2002 .
[9] M. Florence. Points rationnels sur les espaces homogenes et leurs compactifications , 2006 .
[10] Zinovy Reichstein,et al. Essential Dimensions of Algebraic Groups and a Resolution Theorem for G-Varieties , 1999, Canadian Journal of Mathematics.
[11] Алексей Николаевич Скоробогатов,et al. Автоморфизмы и формы торических факторов однородных пространств@@@Automorphisms and forms of toric quotients of homogeneous spaces , 2009 .
[12] D. Saltman. Generic Galois extensions and problems in field theory , 1982 .
[13] Z. Reichstein. On the notion of essential dimension for algebraic groups , 2000 .
[14] 小平 邦彦,et al. Global analysis : papers in honor of K. Kodaira , 2015 .
[15] J. Colliot-Thélène,et al. La descente sur les variétés rationnelles, II , 1987 .
[16] Alexander Duncan. Essential Dimensions of A_7 and S_7 , 2009 .
[17] F. Enriquès,et al. Sulle irrazionalità da cui può farsi dipendere la risoluzione d'un' equazione algebricaf(xyz)=0 con funzioni razionali di due parametri , 1897 .
[18] Ju. Manin,et al. Rational surfaces over perfect fields , 1966 .
[19] H. Tokunaga. TWO-DIMENSIONAL VERSAL G-COVERS AND CREMONA EMBEDDINGS OF FINITE GROUPS , 2006 .
[20] A. Skorobogatov. On a theorem of Enriques - Swinnerton-Dyer , 1993 .
[21] M. Florence,et al. Tori and essential dimension , 2008 .
[22] S. A. Amitsur. On central division algebras , 1972 .
[23] P. Griffiths,et al. The intermediate Jacobian of the cubic threefold , 1972 .
[24] A. Merkurjev. ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS , 2009 .
[25] N. Shepherd-barron,et al. The Rationality of Quintic Del Pezzo Surfaces—A Short Proof , 1992 .
[26] Wanshun Wong. On the essential dimension of cyclic groups , 2011 .
[27] Arnaud Beauville,et al. On finite simple groups of essential dimension 3 , 2011 .
[28] Robin Hartshorne,et al. Algebraic geometry , 1977, Graduate texts in mathematics.
[29] Jean-Pierre Tignol,et al. The Book of Involutions , 1998 .
[30] Yuri Prokhorov. Simple finite subgroups of the Cremona group of rank 3 , 2009, 0908.0678.
[31] Zinovy Reichstein,et al. The essential dimension of the normalizer of a maximal torus in the projective linear group , 2008, 0809.1688.
[32] V. Voskresenskii. PROJECTIVE INVARIANT DEMAZURE MODELS , 1983 .
[33] Adam Logan,et al. The Kodaira dimension of moduli spaces of curves with marked points , 2001, math/0110312.
[34] A. Grothendieck. Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .
[35] Alexander Grothendieck,et al. Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie , 1966 .
[36] G. Berhuy,et al. Essential dimension: A functorial point of view (after A. Merkurjev) , 2003, Documenta Mathematica.
[37] Armand Borel. Linear Algebraic Groups , 1991 .
[38] Skip Garibaldi,et al. Cohomological Invariants in Galois Cohomology , 2003 .
[39] T. Browning,et al. Local Fields , 2008 .
[40] Z. Reichstein,et al. Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action? , 2009, Compositio Mathematica.
[41] A. Adler. On the Automorphism Group of a Certain Cubic Threefold , 1978 .
[42] C. Fontanari,et al. On the rationality of moduli spaces of pointed curves , 2005, math/0504249.
[43] Jean-Pierre Serre. A Minkowski-style bound for the order of the finite subgroups of the Cremona group of rank 2 over an arbitrary field , 2009, 0903.0514.
[44] Michel Demazure,et al. Sous-groupes algébriques de rang maximum du groupe de Cremona , 1970 .
[45] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[46] Nikita A. Karpenko,et al. Essential dimension of finite p-groups , 2008 .
[47] T. Wassmer. 6 , 1900, EXILE.
[48] David J. Saltman,et al. Lectures on Division Algebras , 1999 .
[49] Z. Reichstein,et al. Reduction of structure for torsors over semilocal rings , 2007, 0710.2064.
[50] F. Oort,et al. Representability of group functors, and automorphisms of algebraic schemes , 1967 .
[51] D. Mumford,et al. Geometric Invariant Theory , 2011 .
[52] I. Dolgachev,et al. Finite Subgroups of the Plane Cremona Group , 2006, math/0610595.
[53] W. Schelter. Non-commutative affine P. I. rings are catenary , 1978 .
[54] Burt Totaro,et al. The Chow ring of a classifying space , 1998, math/9802097.
[55] E. Ballico,et al. On the birational geometry of moduli spaces of pointed curves , 2007, math/0701475.