Properties of bulk-polymerized thermoplastic polyurethane nanocomposites

The thermal, rheological, and mechanical properties of bulk-polymerized thermoplastic polyurethane nanocomposites of reactive and non-reactive layered silicate clay were characterized as a function of the state of dispersion of particles. True exfoliated nanocomposites were produced by mixing reactive clay particles with polymer chains carrying residual isocyanate groups. On the other hand, non-reactive clay particles yielded only intercalated composites. Most significant improvement in mechanical properties were obtained when clay particles were fully exfoliated, e.g. 110% increase in tensile modulus, 170% increase in tensile strength, 110% increase in tear strength, 120% increase in fracture toughness, and 40% increase in abrasion resistance over pristine polyurethane with 5 wt% clay. In addition, the terminal dynamic rheological data showed strong dependence on the clay content, indicating substantial hindrance to chain relaxation by tethering clay particles. The peak location and the area under the peak of hydrogen-bonded carbonyl showed two distinct zones of temperature dependence, which indicate additional hydrogen bonding between polymer chains and organic modifier of reactive clays.

[1]  W. MacKnight,et al.  Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane , 1980 .

[2]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[3]  Y. Kawano,et al.  Thermal degradation of biomedical polyurethanes—A kinetic study using high-resolution thermogravimetry , 2001 .

[4]  Mo Song,et al.  High performance nanocomposites of polyurethane elastomer and organically modified layered silicate , 2003 .

[5]  T. Chang,et al.  Thermo-oxidative degradation of phosphorus-containing polyurethane , 1995 .

[6]  Xiaozhen Yang,et al.  Spectroscopic analysis of ordering and phase-separation behavior of model polyurethanes in a restricted geometry , 1992 .

[7]  C. Han,et al.  Effect of Thermal History on the Rheological Behavior of Thermoplastic Polyurethanes , 2000 .

[8]  C. Macosko,et al.  Order-disorder transition in a block copolyurethane , 1992 .

[9]  K. Wei,et al.  Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios , 2001 .

[10]  S. Cooper,et al.  Infrared thermal analysis of polyurethane block polymers , 1978 .

[11]  J. L. Stanford,et al.  Thermal, mechanical and fracture properties of reaction injection-moulded poly(urethane-urea)s , 1991 .

[12]  M. Morbidelli,et al.  Polyurethane Adhesive Nanocomposites as Gas Permeation Barrier , 2003 .

[13]  Mo Song,et al.  Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites , 2002 .

[14]  S. Cooper,et al.  Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length , 1998 .

[15]  A. I. Leonov,et al.  Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates , 2004 .

[16]  Ivan Javni,et al.  Structure and properties of polyurethane–silica nanocomposites , 2000 .

[17]  Thomas J. Pinnavaia,et al.  Nanolayer Reinforcement of Elastomeric Polyurethane , 1998 .

[18]  R. Ballard,et al.  Fracture toughness of inorganic-organic hybrid coatings , 2001 .

[19]  S. Cooper,et al.  Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding , 1970 .

[20]  C. Macosko,et al.  Thermal degradation of urethanes based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol (MDI/BDO) , 1986 .

[21]  R. E. Camargo,et al.  Experimental studies of phase separation in reaction injection‐molded (RIM) polyurethanes , 1982 .

[22]  E. Chiellini,et al.  Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites , 2002 .

[23]  Xiaozhen Yang,et al.  A SPECTROSCOPIC ANALYSIS OF PHASE-SEPARATION BEHAVIOR OF POLYURETHANE IN RESTRICTED GEOMETRY - CHAIN RIGIDITY EFFECTS , 1994 .

[24]  K. Wei,et al.  High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders , 2001 .

[25]  Stuart L. Cooper,et al.  Effect of segment size and polydispersity on the properties of polyurethane block polymers , 1973 .

[26]  G. Nando,et al.  Thermal degradation of short polyester fiber-polyurethane elastomer composite , 1998 .

[27]  Stuart L. Cooper,et al.  Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution , 1985 .

[28]  James Runt,et al.  New Biomedical Poly(urethane urea)−Layered Silicate Nanocomposites , 2001 .

[29]  W. Fan,et al.  Synthesis of polyurethane/clay intercalated nanocomposites , 2001 .

[30]  Jin-Hae Chang,et al.  Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability* , 2002 .

[31]  S. Jana,et al.  Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods , 2005 .

[32]  R. Mülhaupt,et al.  Polyurethane Nanocomposites Containing Laminated Anisotropic Nanoparticles Derived from Organophilic Layered Silicates , 1999 .

[33]  N. Schneider,et al.  Infrared Studies of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes , 1975 .

[34]  Jisheng Ma,et al.  SYNTHESIS AND CHARACTERIZATION OF ELASTOMERIC POLYURETHANE/CLAY NANOCOMPOSITES , 2001 .

[35]  J. K. Mishra,et al.  New Millable Polyurethane/Organoclay Nanocomposite: Preparation, Characterization and Properties , 2003 .

[36]  T. Chen,et al.  Glass Transition Behaviors of a Polyurethane Hard Segment based on 4,4‘-Diisocyanatodiphenylmethane and 1,4-Butanediol and the Calculation of Microdomain Composition , 1997 .

[37]  Z. Zavargo,et al.  Thermal degradation of segmented polyurethanes , 1994 .

[38]  Paul C. Painter,et al.  Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane , 1986 .

[39]  E. Giannelis,et al.  Rheology of End-Tethered Polymer Layered Silicate Nanocomposites , 1997 .

[40]  Xinmin Zhang,et al.  The synthesis and characterization of polyurethane/clay nanocomposites , 2003 .

[41]  S. Cooper,et al.  Thermal Analysis of Polyurethane Block Polymers , 1973 .

[42]  J. Koberstein,et al.  DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers , 1986 .

[43]  R. Pethrick,et al.  Influence of processing method on the exfoliation process for organically modified clay systems. I. Polyurethanes , 2004 .

[44]  S. Jana,et al.  Mechanism of Exfoliation of Nanoclay Particles in Epoxy−Clay Nanocomposites , 2003 .

[45]  Thomas P. Russell,et al.  Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers , 1986 .

[46]  H. Lee,et al.  Spectroscopic analysis of phase separation behavior of model polyurethanes , 1987 .

[47]  K. Wei,et al.  Synthesis and characterization of novel segmented polyurethane/clay nanocomposites , 2000 .

[48]  Stuart L. Cooper,et al.  Morphology and properties of segmented polyether polyurethaneureas , 1983 .

[49]  K. Wei,et al.  The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane , 2002 .

[50]  O. Park,et al.  Phase morphology and rheological behavior of polymer/layered silicate nanocomposites , 2001 .