Experimental entanglement of four particles

Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such ‘entangled’ states explicitly demonstrate the non-local character of quantum theory, having potential applications in high-precision spectroscopy, quantum communication, cryptography and computation. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited—and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.

[1]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[2]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[3]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[4]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[5]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[6]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[7]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[9]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[11]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[12]  J. Raimond,et al.  Generation of Einstein-Podolsky-Rosen Pairs of Atoms , 1997 .

[13]  H. J. Kimble,et al.  Deterministic generation of a bit-stream of single-photon pulses , 1997 .

[14]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[15]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[16]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[17]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[18]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[19]  M. Lewenstein,et al.  Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.

[20]  C. Monroe,et al.  Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.

[21]  Dietrich Leibfried,et al.  LASER ADDRESSING OF INDIVIDUAL IONS IN A LINEAR ION TRAP , 1999 .

[22]  John Preskill,et al.  Battling decoherence: The fault-tolerant quantum computer , 1999 .

[23]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[24]  Simulating nonlinear spin models in an ion trap , 1999, quant-ph/9908037.

[25]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[26]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[27]  A Photon‐Activated Switch Detects Single Far‐Infrared Photons , 2000 .

[28]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[29]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[30]  Richard J. Fitzgerald What Really Gives a Quantum Computer Its Power , 2000 .

[31]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[32]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .