A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets
暂无分享,去创建一个
[1] W. Schmidt. Irregularities of distribution , 1968 .
[2] Robert Béjian,et al. Discrépance de la suite de van der Corput , 1978 .
[3] Peter Kritzer,et al. A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..
[4] Robert Béjian. Minoration de la discrépance d'une suite quelconque sur T , 1982 .
[5] H. Faure,et al. On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .
[6] S. K. Zaremba,et al. The extreme and L2 discrepancies of some plane sets , 1969 .
[7] Michael Drmota,et al. Precise distribution properties of the van der Corput sequence and related sequences , 2005 .
[8] Friedrich Pillichshammer. On the discrepancy of (0,1)-sequences , 2004 .
[9] Peter Kritzer. On some remarkable properties of the two-dimensional Hammersley point set in base 2 , 2006 .
[10] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[11] L. D. Clerck,et al. A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .
[12] Friedrich Pillichshammer,et al. Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .
[13] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[14] W. Schmidt. On irregularities of distribution vii , 1972 .
[15] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[16] Point sets with low Lp-discrepancy , 2007 .