Notes on order preservation and consistency in AHP

The pairwise comparisons method is a convenient tool used when the relative order among different concepts (alternatives) needs to be determined. One popular implementation of the method is based on solving an eigenvalue problem for the pairwise comparisons matrix. In such cases the ranking result the principal eigenvector of the pairwise comparison matrix is adopted, whilst the eigenvalue is used to determine the index of inconsistency. A lot of research has been devoted to the critical analysis of the eigenvalue based approach. One of them is the work of Bana e Costa and Vansninck [1]. In their work authors define the conditions of order preservation (COP) and show that even for a sufficiently consistent pairwise comparisons matrices, this condition can not be met. The present work defines a more precise criteria for determining when the COP is met. To formulate the criteria a discrepancy factor is used describing how far the input to the ranking procedure is from the ranking result.

[1]  Konrad Kulakowski,et al.  A heuristic rating estimation algorithm for the pairwise comparisons method , 2015, Central Eur. J. Oper. Res..

[2]  W. W. Koczkodaj A new definition of consistency of pairwise comparisons , 1993 .

[3]  L. Thurstone A law of comparative judgment. , 1994 .

[4]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..

[5]  Michele Fedrizzi,et al.  On the priority vector associated with a reciprocal relation and a pairwise comparison matrix , 2010, Soft Comput..

[6]  Waldemar W. Koczkodaj,et al.  On some convexity properties of the Least Squares Method for pairwise comparisons matrices without the reciprocity condition , 2012, J. Glob. Optim..

[7]  Matthew J. Liberatore,et al.  The analytic hierarchy process in medical and health care decision making: A literature review , 2008, Eur. J. Oper. Res..

[8]  Salvatore Greco,et al.  Dominance-Based Rough Set Approach on Pairwise Comparison Tables to Decision Involving Multiple Decision Makers , 2011, RSKT.

[9]  Michele Fedrizzi,et al.  Incomplete pairwise comparison and consistency optimization , 2007, Eur. J. Oper. Res..

[10]  T. Brown,et al.  Economic Valuation by the Method of Paired Comparison, with Emphasis on Evaluation of the Transitivity Axiom , 1998 .

[11]  Ludmil Mikhailov,et al.  Deriving priorities from fuzzy pairwise comparison judgements , 2003, Fuzzy Sets Syst..

[12]  J. Dyer Remarks on the analytic hierarchy process , 1990 .

[13]  William Ho,et al.  Integrated analytic hierarchy process and its applications - A literature review , 2008, Eur. J. Oper. Res..

[14]  Carlos A. Bana e Costa,et al.  A critical analysis of the eigenvalue method used to derive priorities in AHP , 2008, Eur. J. Oper. Res..

[15]  O. Perron Zur Theorie der Matrices , 1907 .

[16]  Nachiappan Subramanian,et al.  A review of applications of Analytic Hierarchy Process in operations management , 2012 .

[17]  Waldemar W. Koczkodaj,et al.  Managing Null Entries in Pairwise Comparisons , 1999, Knowledge and Information Systems.

[18]  Ryszard Janicki,et al.  On a pairwise comparison-based consistent non-numerical ranking , 2012, Log. J. IGPL.

[19]  Sushil Kumar,et al.  Analytic hierarchy process: An overview of applications , 2006, Eur. J. Oper. Res..

[20]  J. Barzilai,et al.  Ahp Rank Reversal, Normalization and Aggregation Rules , 1994 .

[21]  Waldemar W. Koczkodaj,et al.  On distance-based inconsistency reduction algorithms for pairwise comparisons , 2010, Log. J. IGPL.

[22]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[23]  Detlof von Winterfeldt,et al.  Anniversary Article: Decision Analysis in Management Science , 2004, Manag. Sci..

[24]  Josep M. Colomer,et al.  Ramon Llull: from ‘Ars electionis’ to social choice theory , 2011, Social Choice and Welfare.

[25]  Konrad Kulakowski,et al.  Heuristic Rating Estimation Approach to The Pairwise Comparisons Method , 2013, Fundam. Informaticae.

[26]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[27]  Alessio Ishizaka,et al.  Analytic Hierarchy Process and Expert Choice: Benefits and limitations , 2009, OR Insight.

[28]  Kevin Kam Fung Yuen,et al.  Fuzzy Cognitive Network Process: Comparisons With Fuzzy Analytic Hierarchy Process in New Product Development Strategy , 2014, IEEE Transactions on Fuzzy Systems.

[29]  Tamás Rapcsák,et al.  On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices , 2008, J. Glob. Optim..

[30]  Thomas L. Saaty,et al.  On the measurement of intengibles. a principal Eigenvector approach to relative measurement derived from paired comparisons , 2013 .