Development of a multiblock metabolomics approach to explore metabolite variations of two algae of the genus Asparagopsis linked to interspecies and temporal factors

[1]  F. Chow,et al.  Nutritional Composition of Beach-Cast Marine Algae from the Brazilian Coast: Added Value for Algal Biomass Considered as Waste , 2022, Foods.

[2]  José M. S. Ponte,et al.  Asparagopsis Genus: What We Really Know About Its Biological Activities and Chemical Composition , 2022, Molecules.

[3]  Y. Choi,et al.  Metabolomics on the study of marine organisms , 2022, Metabolomics.

[4]  D. Pinto,et al.  GC- and UHPLC-MS Profiles as a Tool to Valorize the Red Alga Asparagopsis armata , 2022, Applied Sciences.

[5]  A. Sherwood,et al.  Concise review of the genus Asparagopsis Montagne, 1840 , 2022, Journal of Applied Phycology.

[6]  El Mostafa Qannari,et al.  A general strategy for setting up supervised methods of multiblock data analysis , 2021 .

[7]  Linbin Huang,et al.  Multi-omics responses of red algae Pyropia haitanensis to intertidal desiccation during low tides , 2021 .

[8]  A. Campbell,et al.  Effects of a seaweed feed inclusion on different life stages of the mottled rabbitfish Siganus fuscescens , 2021, Aquaculture Research.

[9]  M. Castellari,et al.  Levels of taurine, hypotaurine and homotaurine, and amino acids profiles in selected commercial seaweeds, microalgae, and algae-enriched food products. , 2021, Food chemistry.

[10]  J. Xia,et al.  MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights , 2021, Nucleic Acids Res..

[11]  A. Campbell,et al.  Seaweed dietary supplements enhance the innate immune response of the mottled rabbitfish, Siganus fuscescens. , 2021, Fish & shellfish immunology.

[12]  M. Stanley,et al.  Exploring the Chemical Space of Macro- and Micro-Algae Using Comparative Metabolomics , 2021, Microorganisms.

[13]  P. Schupp,et al.  Metabolomics and Marine Biotechnology: Coupling Metabolite Profiling and Organism Biology for the Discovery of New Compounds , 2020, Frontiers in Marine Science.

[14]  P. Domingues,et al.  Seasonal plasticity of the polar lipidome of Ulva rigida cultivated in a sustainable integrated multi-trophic aquaculture , 2020 .

[15]  E. Kebreab,et al.  Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers , 2020, bioRxiv.

[16]  J. Smith,et al.  Genetic and biochemical reconstitution of bromoform biosynthesis in Asparagopsis lends insights into seaweed ROS enzymology. , 2020, ACS chemical biology.

[17]  B. Misson,et al.  A Multi-Omics Analysis Suggests Links Between the Differentiated Surface Metabolome and Epiphytic Microbiota Along the Thallus of a Mediterranean Seaweed Holobiont , 2020, Frontiers in Microbiology.

[18]  O. Thomas,et al.  Impact of ocean acidification on the metabolome of the brown macroalgae Lobophora rosacea from New Caledonia , 2020 .

[19]  Evelyne Vigneau,et al.  Unsupervised multiblock data analysis: A unified approach and extensions , 2019, Chemometrics and Intelligent Laboratory Systems.

[20]  S. Fraschetti,et al.  The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach. , 2019, Environmental pollution.

[21]  E. Kebreab,et al.  Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent , 2019, Journal of Cleaner Production.

[22]  D. Debroas,et al.  Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. , 2019, Environmental microbiology.

[23]  O. Thomas,et al.  Metabolomic variability of four macroalgal species of the genus Lobophora using diverse approaches. , 2019, Phytochemistry.

[24]  Elisabete Coelho,et al.  Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus , 2019, Marine drugs.

[25]  S. Connan,et al.  Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs). , 2019, Marine environmental research.

[26]  S. Böcker,et al.  SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information , 2019, Nature Methods.

[27]  D. Jacob,et al.  Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: extract preparation, standardization, automation and spectra processing , 2019, Metabolomics.

[28]  O. Thomas,et al.  High metabolic variation for seaweeds in response to environmental changes: a case study of the brown algae Lobophora in coral reefs , 2019, Scientific Reports.

[29]  U. Karsten,et al.  Stress metabolite pattern in the eulittoral red alga Pyropia plicata (Bangiales) in New Zealand – mycosporine-like amino acids and heterosides , 2019, Journal of Experimental Marine Biology and Ecology.

[30]  L. Botana,et al.  Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata , 2018, Algal Research.

[31]  Freddy Guihéneuf,et al.  Plasticity and remodelling of lipids support acclimation potential in two species of low-intertidal macroalgae, Fucus serratus (Phaeophyceae) and Palmaria palmata (Rhodophyta) , 2017 .

[32]  Shuzhao Li,et al.  One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. , 2017, Analytical chemistry.

[33]  Yann Guitton,et al.  Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. , 2017, The international journal of biochemistry & cell biology.

[34]  R. Nys,et al.  Within-species and temperature-related variation in the growth and natural products of the red alga Asparagopsis taxiformis , 2017, Journal of Applied Phycology.

[35]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[36]  R. Costa,et al.  The effect of live feeds bathed with the red seaweed Asparagopsis armata on the survival, growth and physiology status of Sparus aurata larvae , 2017, Fish Physiology and Biochemistry.

[37]  C. Payri,et al.  Chemogeography of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness , 2017, Metabolomics.

[38]  N. Kervarec,et al.  Seasonal phenology and metabolomics of the introduced red macroalga Gracilaria vermiculophylla, monitored in the Bay of Brest (France) , 2017, Journal of Applied Phycology.

[39]  C. Deborde,et al.  NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics , 2016, Metabolomics.

[40]  D. Lecchini,et al.  Effects of local Polynesian plants and algae on growth and expression of two immune-related genes in orbicular batfish (Platax orbicularis). , 2016, Fish & shellfish immunology.

[41]  D. Barreca,et al.  Preliminary Study on the In vitro and In vivo Effects of Asparagopsis taxiformis Bioactive Phycoderivates on Teleosts , 2016, Front. Physiol..

[42]  M. van der Maarel,et al.  Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress , 2016, AMB Express.

[43]  R. Nys,et al.  Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro , 2016, Journal of Applied Phycology.

[44]  E. Thévenot,et al.  Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. , 2015, Journal of proteome research.

[45]  Daniel Jacob,et al.  Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics , 2014, Bioinform..

[46]  T. Tonon,et al.  Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae , 2014, BMC Plant Biology.

[47]  G. Genta‐Jouve,et al.  Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. , 2014, Journal of natural products.

[48]  H. A. E. Baky,et al.  Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae , 2013 .

[49]  G. Wielgosz-Collin,et al.  Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu , 2013, Journal of Applied Phycology.

[50]  H. Pereira,et al.  Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications , 2012, Marine drugs.

[51]  S. Shi,et al.  Combined small molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors , 2012, Nature Biotechnology.

[52]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[53]  J. Selvin,et al.  In vivo therapeutic potentiality of red seaweed, Asparagopsis (Bonnemaisoniales, Rhodophyta) in the treatment of Vibriosis in Penaeus monodon Fabricius. , 2012, Saudi journal of biological sciences.

[54]  C. Faggio,et al.  In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. , 2012, Marine environmental research.

[55]  P. Valentão,et al.  STEROL PROFILES IN 18 MACROALGAE OF THE PORTUGUESE COAST 1 , 2011, Journal of phycology.

[56]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[57]  N. Fusetani Biotechnological potential of marine natural products , 2010 .

[58]  Frans M van der Kloet,et al.  Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. , 2009, Journal of proteome research.

[59]  L. Tedone,et al.  The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania , 2009, Marine drugs.

[60]  F. Figueroa,et al.  Accumulation of mycosporine-like amino acids in Asparagopsis armata grown in tanks with fishpond effluents of gilthead sea bream, Sparus aurata , 2008 .

[61]  Hai Liu,et al.  The effects of betonicine, floridoside, and isethionic acid from the red alga Ahnfeltiopsis flabelliformis on quorum-sensing activity , 2008 .

[62]  A. Vergés,et al.  Sex and life-history stage alter herbivore responses to a chemically defended red alga. , 2008, Ecology.

[63]  A. Shevchenko,et al.  Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. , 2008, Journal of lipid research.

[64]  N. Salvador,et al.  Antimicrobial activity of Iberian macroalgae , 2007 .

[65]  M. Viant,et al.  Metabolomics of aquatic organisms: the new omics on the block , 2007 .

[66]  U. Lindequist,et al.  Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria , 2006 .

[67]  S. Garrigues,et al.  FTIR-determination of sterols from the red alga Asparagopsis armata: Comparative studies with HPLC. , 2006, Talanta.

[68]  R. Nys,et al.  Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function , 2006 .

[69]  G. Procaccini,et al.  Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): genetic and morphological identification of Mediterranean populations , 2004 .

[70]  C. Hellio,et al.  Isethionic Acid and Floridoside Isolated from the Red Alga, Grateloupia turuturu, Inhibit Settlement of Balanus amphitrite Cyprid Larvae , 2004, Biofouling.

[71]  N. Kervarec,et al.  Characterization of N‐methyl‐L‐methionine sulfoxide and isethionic acid from the red alga Grateloupia doryphora , 2002 .

[72]  K. Akashi,et al.  Citrulline, a novel compatible solute in drought‐tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger , 2001, FEBS letters.

[73]  M. Lahaye,et al.  Chemical Composition and Structure of Sulphated Water-Soluble Cell-Wall Polysaccharides from the Gametic, Carposporic and Tetrasporic Stages of Asparagopsis armata Harvey (Rhodophyta, Bonnemaisoniaceae) , 2000 .

[74]  Pierre Legendre,et al.  DISTANCE‐BASED REDUNDANCY ANALYSIS: TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL EXPERIMENTS , 1999 .

[75]  U. Karsten,et al.  Isethionic acid from the marine red alga Ceramium flaccidum , 1993 .

[76]  U. Karsten,et al.  Floridoside, L-Isofloridoside, and D-Isofloridoside in the Red Alga Porphyra columbina (Seasonal and Osmotic Effects) , 1993, Plant physiology.

[77]  G. Combaut,et al.  Comparative Sterols Composition of the Red Alga Asparagopsis armata and Its Tetrasporophyte Falkenbergia rufolanosa. , 1979, Journal of natural products.

[78]  Richard E. Moore,et al.  Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta) , 1976 .

[79]  E. Fattorusso,et al.  Amino acids and low-molecular-weight carbohydrates of some marine red algae , 1975 .

[80]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.

[81]  A. Campbell,et al.  Dietary inclusion of the red seaweed Asparagopsis taxiformis boosts production, stimulates immune response and modulates gut microbiota in Atlantic salmon, Salmo salar , 2022 .

[82]  Shoshi Mizuta,et al.  The Taurine Content of Japanese Seaweed. , 2017, Advances in experimental medicine and biology.

[83]  R. Baghel,et al.  Chapter Two - Seaweed Metabolomics: A New Facet of Functional Genomics , 2014 .

[84]  V. Roussis,et al.  Volatile halogenated metabolites from marine red algae , 2004, Phytochemistry Reviews.

[85]  Brian H. McArdle,et al.  FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .

[86]  J. Harwood Membrane Lipids in Algae , 1998 .

[87]  H. Horikoshi,et al.  Aldose reductase inhibitors from the red alga, Asparagopsis taxiformis , 1990 .

[88]  Richard E. Moore,et al.  Halogenated acetic and acrylic acids from the red alga Asparagopsis taxiformis , 1979 .

[89]  W. Fenical,et al.  Halogen chemistry of the red alga Asparagopsis , 1977 .

[90]  Richard E. Moore,et al.  Halogenated acetamides, but-3-en-2-ols, and isopropanols from asparagopsis taxiformis (delile) trev , 1976 .

[91]  Richard E. Moore,et al.  Haloforms in the essential oil of the alga asparagopsis taxiformis (rhodophyta) , 1975 .