On computing the split-radix FFT
暂无分享,去创建一个
C. Sidney Burrus | Henrik V. Sorensen | Michael T. Heideman | H. V. Sorensen | C. Burrus | M. Heideman
[1] C. Burrus,et al. An in-place, in-order prime factor FFT algorithm , 1981 .
[2] S. Winograd. On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[3] Pierre Duhamel,et al. Implementation of "Split-radix" FFT algorithms for complex, real, and real-symmetric data , 1986, IEEE Trans. Acoust. Speech Signal Process..
[4] Douglas L. Jones,et al. On computing the discrete Hartley transform , 1985, IEEE Trans. Acoust. Speech Signal Process..
[5] S. Winograd. Arithmetic complexity of computations , 1980 .
[6] S. Winograd. On the multiplicative complexity of the Discrete Fourier Transform , 1979 .
[7] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[8] Henk D. L. Hollmann,et al. Implementation of "Split-radix" FFT algorithms for complex, real, and real symmetric data , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[9] Pierre Duhamel,et al. Existence of a 2n FFT algorithm with a number of multiplications lower than 2n+1 , 1984 .
[10] J. Martens. Recursive cyclotomic factorization--A new algorithm for calculating the discrete Fourier transform , 1984 .
[11] R. Yavne,et al. An economical method for calculating the discrete Fourier transform , 1899, AFIPS Fall Joint Computing Conference.
[12] M. Vetterli,et al. Simple FFT and DCT algorithms with reduced number of operations , 1984 .
[13] P. Duhamel,et al. `Split radix' FFT algorithm , 1984 .
[14] M. Heideman,et al. Multiply/Add tradeoffs in length-2nFFT algorithms , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.