A causal analysis of error in viewsheds from USGS digital elevation models

Users of GIS are faced with the ongoing and difficult problem of estimating the validity of a GIS output given the uncertainty of the quality of digital mapped data. This research project examines the manner in which error from a digital elevation model (DEM) results in error in an estimate of a viewshed. The data set includes two DEMs for the same study area. A 10-metre DEM serves as the control model to test a United States Geological Survey (USGS) DEM. The amount and spatial pattern of the error in the test DEM is determined by comparing it to the control DEM. A viewshed analysis is then performed at a set of 61 sites. After determining the relative accuracy of the viewsheds thus estimated, a causal model of viewshed error is developed, which links the sources of the DEM error with the error in the viewshed. The most important factor in DEM error is terrain roughness. The error in the viewsheds is a result of the error being propagated from the DEM, with landscape characteristics of the viewpoinr playing a role due to their effect on the error in the DEM. The conceptual path model developed sets the stage for a quancitative approach that will attempt to predict viewshed error from the landscape characteristics without direct knowledge of the error in the DEM.