Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays

Efficient organic light-emitting transistors use carbon nanotubes as the source electrode. Intrinsic nonuniformity in the polycrystalline-silicon backplane transistors of active matrix organic light-emitting diode displays severely limits display size. Organic semiconductors might provide an alternative, but their mobility remains too low to be useful in the conventional thin-film transistor design. Here we demonstrate an organic channel light-emitting transistor operating at low voltage, with low power dissipation, and high aperture ratio, in the three primary colors. The high level of performance is enabled by a single-wall carbon nanotube network source electrode that permits integration of the drive transistor and the light emitter into an efficient single stacked device. The performance demonstrated is comparable to that of polycrystalline-silicon backplane transistor-driven display pixels.

[1]  A. Rinzler,et al.  Reorientation of the high mobility plane in pentacene-based carbon nanotube enabled vertical field effect transistors. , 2011, ACS nano.

[2]  A. Rinzler,et al.  Non‐Volatile Organic Memory Elements Based on Carbon‐Nanotube‐Enabled Vertical Field‐Effect Transistors , 2010 .

[3]  A. Rinzler,et al.  High current, low voltage carbon nanotube enabled vertical organic field effect transistors. , 2010, Nano letters.

[4]  O. Kim,et al.  Voltage-Programming-Based Pixel Circuit to Compensate for Threshold Voltage and Mobility Using Natural Capacitance of Organic Light-Emitting Diode , 2010 .

[5]  Chih-Pang Chang,et al.  Improved Electrical Performance and Uniformity of MILC Poly-Si TFTs Manufactured Using Drive-In Nickel-Induced Lateral Crystallization , 2009, IEEE Electron Device Letters.

[6]  O. Kim,et al.  Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays , 2008 .

[7]  A. Rinzler,et al.  Carbon‐Nanotube‐Enabled Vertical Field Effect and Light‐Emitting Transistors , 2008 .

[8]  T. Hata,et al.  Improvement of Metal–Insulator–Semiconductor-Type Organic Light-Emitting Transistors , 2008 .

[9]  T. Matsushima,et al.  Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers , 2008 .

[10]  Liping Ma,et al.  Vertical organic light emitting transistor , 2007 .

[11]  Kazuhiro Kudo,et al.  Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film , 2007 .

[12]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[13]  S. Oh,et al.  Vertical Type Organic Transistor Using C60 and its Application for OLET , 2006 .

[14]  A. Rinzler,et al.  Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions , 2006 .

[15]  A. Nathan,et al.  Driving schemes for a-Si and LTPS AMOLED displays , 2005, Journal of Display Technology.

[16]  Kenji Nakamura,et al.  Vertical type organic light emitting device using thin-film ZnO electrode , 2005 .

[17]  M. Tsuchida,et al.  Active Matrix Driving Organic Light-Emitting Diode Panel Using Organic Thin-Film Transistors , 2005 .

[18]  Kazuhiro Kudo,et al.  Organic light emitting transistors , 2005 .

[19]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[20]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[21]  H. Takezoe,et al.  Enhanced luminescence in top-gate-type organic light-emitting transistors , 2004 .

[22]  H. Fujii,et al.  Driving Duty Ratio Dependence of Lifetime of Tris(8-hydroxy-quinolinate)aluminum-Based Organic Light-Emitting Diodes , 2001 .

[23]  Stephen R. Forrest,et al.  Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film , 2001 .

[24]  M. Kimura,et al.  Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display , 1999 .

[25]  Shizuo Tokito,et al.  Metal oxides as a hole-injecting layer for an organic electroluminescent device , 1996 .

[26]  Pole-Shang Lin,et al.  The impact of scaling-down oxide thickness on poly-Si thin-film transistors' I-V characteristics , 1994 .

[27]  M. J. Powell The physics of amorphous-silicon thin-film transistors , 1989 .

[28]  J. R. Hughes,et al.  Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors , 1989 .

[29]  Stephen R. Forrest,et al.  Design of flat-panel displays based on organic light-emitting devices , 1998 .