Object Detection and tracking in Video Sequences

This paper focuses on key steps in video analysis i.e. Detection of moving objects of interest and tracking of such objects from frame to frame. The object shape representations commonly employed for tracking are first reviewed and the criterion of feature Selection for tracking is discussed. Various object detection and tracking approaches are compared and analyzed.

[1]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[2]  Hans P. Moravec Visual Mapping by a Robot Rover , 1979, IJCAI.

[3]  K. Laws Textured Image Segmentation , 1980 .

[4]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[7]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ishwar K. Sethi,et al.  Feature Point Correspondence in the Presence of Occlusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Daniel P. Huttenlocher,et al.  Tracking non-rigid objects in complex scenes , 1993, 1993 (4th) International Conference on Computer Vision.

[11]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Josef Kittler,et al.  Defect detection in random colour textures , 1996, Image Vis. Comput..

[14]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[15]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Sean Dougherty,et al.  Edge detector evaluation using empirical ROC curves , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[20]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[24]  Guillermo Sapiro,et al.  Morphing Active Contours , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Jake K. Aggarwal,et al.  Segmentation and recognition of continuous human activity , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[26]  Cor J. Veenman,et al.  Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Georgios S. Paschos,et al.  Perceptually uniform color spaces for color texture analysis: an empirical evaluation , 2001, IEEE Trans. Image Process..

[28]  Sean Dougherty,et al.  Edge Detector Evaluation Using Empirical ROC Curves , 2001, Comput. Vis. Image Underst..

[29]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[30]  Hai Tao,et al.  Object Tracking with Bayesian Estimation of Dynamic Layer Representations , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Gérard G. Medioni,et al.  Object reacquisition using invariant appearance model , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[33]  Xin Li,et al.  Contour-based object tracking with occlusion handling in video acquired using mobile cameras , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[35]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[36]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  L. Gool,et al.  Probabilistic object tracking using multiple features , 2004, ICPR 2004.

[38]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[39]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[40]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[41]  Jae Wook Jeon,et al.  Readjusting Unstable Regions to Improve the Quality of High Accuracy Optical Flow , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[42]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .