Proof-complexity results for nonmonotonic reasoning

It is well-known that almost all nonmonotonic formalisms have a higher worst-case complexity than classical reasoning. In some sense, this observation denies one of the original motivations of nonmonotonic systems, which was the expectation taht nonmonotonic rules should help to speed-up the reasoning process, and not make it more difficult. In this paper, we look at this issue from a proof-theoretical perspective. We consider analytic calculi for certain nonmonotonic logis and analyze to what extent the presence of nonmonotonic rules can simplify the search for proofs. In particular, we show that there are classes of first-order formulae which have only extremely long “classical” proofs, i.e., proofs without applications of nonmonotonic rules, but there are short proofs using nonmonotonic inferences. Hence,despite the increase of complexity in the worst case, there are instances where nonmonotonic reasoning can be much simpler than classical (cut-free) reasoning.

[1]  Alexander Bochman On the Relation Between Default and Modal Consequence Relations , 1994, KR.

[2]  Dov M. Gabbay,et al.  A Proof Theoretical Approach to Default Reasoning I: Tableaux for Default Logic , 1996, J. Log. Comput..

[3]  Nicola Olivetti,et al.  A Sequent Calculus for Skeptical Default Logic , 1997, TABLEAUX.

[4]  David Makinson,et al.  General Theory of Cumulative Inference , 1988, NMR.

[5]  Piero A. Bonatti,et al.  Sequent Calculi for Default and Autoepistemic Logics , 1996, TABLEAUX.

[6]  V. Orevkov Lower bounds for increasing complexity of derivations after cut elimination , 1982 .

[7]  Valentin Goranko,et al.  Refutation systems in modal logic , 1994, Stud Logica.

[8]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[9]  Christos H. Papadimitriou,et al.  Some computational aspects of circumscription , 1988, JACM.

[10]  Roy Dyckho Loop � free construction of counter � models for intuitionistic propositional logic , 1995 .

[11]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[12]  Dov M. Gabbay,et al.  Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems , 1989, Logics and Models of Concurrent Systems.

[13]  Marco Schaerf,et al.  A Survey of Complexity Results for Nonmonotonic Logics , 1993, J. Log. Program..

[14]  Wolfgang Bibel,et al.  Deduction - automated logic , 1993 .

[15]  K. Apt Fundamenta informaticae on Logic Programming , 1990 .

[16]  Rina Dechter,et al.  Default Reasoning Using Classical Logic , 1996, Artif. Intell..

[17]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[18]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[19]  M. A. Nait Abdallah,et al.  An Extended Framework for Default Reasoning , 1989, FCT.

[20]  Hans Tompits,et al.  On Proof Complexity of Circumscription , 1998, TABLEAUX.

[21]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[22]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[23]  Uwe Egly On Different Structure-Preserving Translations to Normal Form , 1996, J. Symb. Comput..

[24]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[25]  Rina Dechter,et al.  Default Logic, Propositional Logic, and Constraints , 1991, AAAI.

[26]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[27]  John S. Schlipf,et al.  Decidability and definability with circumscription , 1987, Ann. Pure Appl. Log..

[28]  Alexander Leitsch,et al.  The Resolution Calculus , 1997, Texts in Theoretical Computer Science An EATCS Series.

[29]  Hector J. Levesque,et al.  All I Know: A Study in Autoepistemic Logic , 1990, Artif. Intell..

[30]  Tomasz F. Skura Refutations and Proofs in S4 , 1996 .

[31]  Ilkka Niemelä On the decidability and complexity of autoepistemic reasoning , 1992, Fundam. Informaticae.

[32]  Francesco M. Donini,et al.  On Compact Representations of Propositional Circumscription , 1995, STACS.

[33]  Uwe Egly On methods of function introduction and related concepts , 1994 .

[34]  Ilkka Niemelä,et al.  A Tableau Calculus for Minimal Model Reasoning , 1996, TABLEAUX.

[35]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[36]  Nicola Olivetti,et al.  A Sequent Calculus for Circumscription , 1997, CSL.

[37]  Hans Tompits,et al.  Non-elementary Speed-Ups in Default Reasoning , 1997, ECSQARU-FAPR.

[38]  Bart Selman,et al.  Hard Problems for Simple Default Logics , 1989, Artif. Intell..

[39]  Marco Cadoli Tractable Reasoning in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[40]  Rafal Dutkiewicz,et al.  The method of axiomatic rejection for the intuitionistic propositional logic , 1989, Stud Logica.

[41]  Alexander Leitsch,et al.  Complexity of Resolution Proofs and Function Introduction , 1992, Ann. Pure Appl. Log..

[42]  Witold Lukaszewicz,et al.  Non-monotonic reasoning - formalization of commonsense reasoning , 1990 .

[43]  Achille C. Varzi Complementary Sentential Logics , 1990 .

[44]  Bart Selman,et al.  The Comparative Linguistics of Knowledge Representation , 1995, IJCAI.

[45]  Francesco M. Donini,et al.  Is Intractability of Non-Monotonic Reasoning a Real Drawback? , 1994, AAAI.

[46]  Ulrich Furbach,et al.  Nonmonotonic Reasoning: Towards Efficient Calculi and Implementations , 2001, Handbook of Automated Reasoning.

[47]  Jonathan Stillman,et al.  The Complexity of Propositional Default Logics , 1992, AAAI.

[48]  Marco Cadoli,et al.  A Survey on Knowledge Compilation , 1997, AI Commun..

[49]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[50]  Hector J. Levesque,et al.  Hard problems for simple default logics , 1992 .

[51]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[52]  Miroslaw Truszczynski,et al.  Nonmonotonic Reasoning is Sometimes Simpler , 1993, Kurt Gödel Colloquium.

[53]  Raymond Reiter On Closed World Data Bases , 1977, Logic and Data Bases.

[54]  TompitsHans,et al.  Proof-complexity results for nonmonotonic reasoning , 2001 .

[55]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[56]  Hans Tompits,et al.  Is Non-Monotonic Reasoning Always Harder? , 1997, LPNMR.

[57]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[58]  Ilkka Niemelä Implementing Circumscription Using a Tableau Method , 1996, ECAI.

[59]  Jan Łukasiewicz Aristotle's Syllogistic From the Standpoint of Modern Formal Logic , 1957 .

[60]  Michael Soltys Bulletin of the Section of Logic , 2002 .

[61]  Joseph T. Clark,et al.  Aristotle's Syllogistic from the Standpoint of Modern Formal Logic. , 1952 .

[62]  Arkady Rabinov A Generalization of Collapsible Cases of Circumscription , 1989, Artif. Intell..

[63]  Hilary Putnam,et al.  Eine Unableitbarkeitsbeweismethode für den Intuitionistischen Aussagenkalkül , 1957, Arch. Math. Log..

[64]  Krzysztof R. Apt,et al.  Arithmetic classification of perfect models of stratified programs , 1991, Fundam. Informaticae.

[65]  R. Statman Lower bounds on Herbrand’s theorem , 1979 .

[66]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[67]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[68]  Witold Łukaszewicz Non-monotonic reasoning : formalization of commonsense reasoning , 1990 .