Interactive Volume Rendering of Diffusion Tensor Data

As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Therefore, we present techniques for multimodal volume rendering of medical data sets with a focus on visualization of diffusion tensor images. The techniques presented allow interactive filtering of information based of importance, directional information, and user-defined areas. By influencing the blending between the data sets, contextual information around the selected structures is preserved.

[1]  L. Lotspeich,et al.  White matter structure in autism: preliminary evidence from diffusion tensor imaging , 2004, Biological Psychiatry.

[2]  Simon K Warfield,et al.  Diffusion Tensor Magnetic Resonance Imaging in Multiple Sclerosis , 2005, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[3]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[4]  Rüdiger Westermann,et al.  The application of GPU particle tracing to diffusion tensor field visualization , 2005, VIS 05. IEEE Visualization, 2005..

[5]  Min Chen,et al.  Feature Aligned Volume Manipulation for Illustration and Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  M. Kraut,et al.  Diffusion tensor MR imaging of the brain and white matter tractography. , 2002, AJR. American journal of roentgenology.

[7]  Leonid Zhukov,et al.  Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI , 2002, IEEE Visualization, 2002. VIS 2002..

[8]  A L Alexander,et al.  Analytical computation of the eigenvalues and eigenvectors in DT-MRI. , 2001, Journal of magnetic resonance.

[9]  H S Markus,et al.  Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. , 1999, Stroke.

[10]  Ivan Viola,et al.  VolumeShop: interactive direct volume illustration , 2005, SIGGRAPH '05.

[11]  Ivan Viola,et al.  Importance-driven volume rendering , 2004, IEEE Visualization 2004.

[12]  Carl-Fredrik Westin,et al.  Anisotropy Creases Delineate White Matter Structure in Diffusion Tensor MRI , 2006, MICCAI.

[13]  Gordon L. Kindlmann,et al.  Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[14]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[15]  Lambertus Hesselink,et al.  Visualization of second order tensor fields and matrix data , 1992, Proceedings Visualization '92.

[16]  Stefan Bruckner,et al.  Exploded Views for Volume Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[17]  Gordon Kindlmann,et al.  Visualization and Analysis of Diffusion Tensor Fields , 2004 .

[18]  James C. Gee,et al.  Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study , 2005, NeuroImage.

[19]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[20]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[21]  Christopher Nimsky,et al.  Visualization of white matter tracts with wrapped streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[22]  Klaus Mueller,et al.  The magic volume lens: an interactive focus+context technique for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[23]  Gerik Scheuermann,et al.  HOT-lines: tracking lines in higher order tensor fields , 2005, VIS 05. IEEE Visualization, 2005..

[24]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[25]  Frans Vos,et al.  Fast and reproducible fiber bundle selection in DTI visualization , 2005, VIS 05. IEEE Visualization, 2005..

[26]  David H. Laidlaw,et al.  An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications , 2006, Visualization and Processing of Tensor Fields.

[27]  S. Lawrie,et al.  Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study , 2003, British Journal of Psychiatry.

[28]  M. Moseley Diffusion tensor imaging and aging – a review , 2002, NMR in biomedicine.