Extracting MUSes

Minimally unsatisfiable subformulas (in short, MUSes) represent the smallest explanations for the inconsistency of SAT instances in terms of the number of involved clauses. Extracting MUSes can thus prove valuable because it circumscribes the sources of contradiction in an instance. In this paper, a new heuristic-based approach to approximate or compute MUSes is presented. It is shown that it often outperforms current competing ones.

[1]  Henry Kautz,et al.  Walksat in the 2004 SAT Competition , 2004 .

[2]  Inês Lynce,et al.  On Computing Minimum Unsatisfiable Cores , 2004, SAT.

[3]  Hans Kleine Büning,et al.  An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF , 1998, Annals of Mathematics and Artificial Intelligence.

[4]  Karem A. Sakallah,et al.  On Finding All Minimally Unsatisfiable Subformulas , 2005, SAT.

[5]  Lakhdar Sais,et al.  Boosting Systematic Search by Weighting Constraints , 2004, ECAI.

[6]  Jinbo Huang,et al.  MUP: a minimal unsatisfiability prover , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[7]  Igor L. Markov,et al.  AMUSE: a minimally-unsatisfiable subformula extractor , 2004, Proceedings. 41st Design Automation Conference, 2004..

[8]  Éric Grégoire,et al.  Overcoming the Christmas Tree Syndrome , 2000, Int. J. Artif. Intell. Tools.

[9]  Georg Gottlob,et al.  On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals , 1992, Artif. Intell..

[10]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[11]  Renato Bruni,et al.  On exact selection of minimally unsatisfiable subformulae , 2005, Annals of Mathematics and Artificial Intelligence.

[12]  Lakhdar Sais,et al.  Boosting complete techniques thanks to local search methods , 1998, Annals of Mathematics and Artificial Intelligence.

[13]  Éric Grégoire,et al.  Checking depth‐limited consistency and inconsistency in knowledge‐based systems , 2001 .

[14]  Lakhdar Sais,et al.  Using Failed Local Search for SAT as an Oracle for Tackling Harder A.I. Problems More Efficiently , 2002, AIMSA.

[15]  Renato Bruni,et al.  Approximating minimal unsatisfiable subformulae by means of adaptive core search , 2003, Discret. Appl. Math..

[16]  Stefan Szeider,et al.  Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference , 2002, Theor. Comput. Sci..

[17]  Hans Kleine Büning,et al.  On subclasses of minimal unsatisfiable formulas , 2000, Discret. Appl. Math..

[18]  Christos H. Papadimitriou,et al.  The Complexity of Facets Resolved , 1988, J. Comput. Syst. Sci..