Monomials in Arithmetic Circuits: Complete Problems in the Counting Hierarchy

We consider the complexity of two questions on polynomials given by arithmetic circuits: testing whether a monomial is present and counting the number of monomials. We show that these problems are complete for subclasses of the counting hierarchy which had few or no known natural complete problems before. We also study these questions for circuits computing multilinear polynomials and for univariate multiplicatively disjoint circuits.

[1]  Meena Mahajan,et al.  A combinatorial algorithm for the determinant , 1997, SODA '97.

[2]  Eric Allender,et al.  Complexity of finite-horizon Markov decision process problems , 2000, JACM.

[3]  Martin Tompa,et al.  A new pebble game that characterizes parallel complexity classes , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[4]  Bin Fu,et al.  The Complexity of Testing Monomials in Multivariate Polynomials , 2010, COCOA.

[5]  Éric Schost,et al.  Interpolation of polynomials given by straight-line programs , 2009, Theor. Comput. Sci..

[6]  H. Venkateswaran,et al.  Properties that characterize LOGCFL , 1987, J. Comput. Syst. Sci..

[7]  Peter Bürgisser On Defining Integers And Proving Arithmetic Circuit Lower Bounds , 2009, computational complexity.

[8]  Jacobo Torán,et al.  Complexity classes defined by counting quantifiers , 1991, JACM.

[9]  Johan Kwisthout,et al.  The Complexity of Finding kth Most Probable Explanations in Probabilistic Networks , 2011, SOFSEM.

[10]  Lane A. Hemaspaandra,et al.  The Complexity Theory Companion , 2002, Texts in Theoretical Computer Science An EATCS Series.

[11]  Eric Allender,et al.  Counting Hierarchies: Polynomial Time and Constant Depth Circuits , 1993, Current Trends in Theoretical Computer Science.

[12]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[13]  Grzegorz Rozenberg,et al.  Current Trends in Theoretical Computer Science - Essays and Tutorials , 1993, Current Trends in Theoretical Computer Science.

[14]  Yann Strozecki,et al.  Enumeration complexity and matroid decomposition , 2010 .

[15]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[16]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[17]  Pascal Koiran,et al.  The complexity of two problems on arithmetic circuits , 2007, Theor. Comput. Sci..

[18]  Yann Strozecki On Enumerating Monomials and Other Combinatorial Structures by Polynomial Interpolation , 2012, Theory of Computing Systems.

[19]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.

[20]  Eric Allender,et al.  The complexity of matrix rank and feasible systems of linear equations , 1999, computational complexity.

[21]  Pierre McKenzie,et al.  The Complexity of Membership Problems for Circuits Over Sets of Natural Numbers , 2007, computational complexity.

[22]  Bin Fu,et al.  Approximating multilinear monomial coefficients and maximum multilinear monomials in multivariate polynomials , 2010, J. Comb. Optim..

[23]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[24]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[25]  Daniel A. Spielman,et al.  Randomness efficient identity testing of multivariate polynomials , 2001, STOC '01.

[26]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[27]  Joachim von zur Gathen,et al.  Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..

[28]  Stefan Mengel,et al.  Monomials in arithmetic circuits: Complete problems in the counting hierarchy , 2012, STACS.

[29]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[30]  Nitin Saxena,et al.  Algebraic Independence in Positive Characteristic -- A p-Adic Calculus , 2012, Electron. Colloquium Comput. Complex..

[31]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[32]  Frederic Green On the power of deterministic reductions to C=P , 2005, Mathematical systems theory.

[33]  E. Allender Arithmetic Circuits and Counting Complexity Classes , 2004 .

[34]  Arnold Schönhage,et al.  On the Power of Random Access Machines , 1979, ICALP.

[35]  Rahul Santhanam,et al.  Permanent does not have succinct polynomial size arithmetic circuits of constant depth , 2011, Inf. Comput..

[36]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[37]  Bin Fu,et al.  Approximating multilinear monomial coefficients and maximum multilinear monomials in multivariate polynomials , 2013, J. Comb. Optim..

[38]  Pascal Koiran,et al.  Interpolation in Valiant’s Theory , 2011, computational complexity.

[39]  Klaus W. Wagner,et al.  The complexity of combinatorial problems with succinct input representation , 1986, Acta Informatica.

[40]  Jacobo Torán Succinct Representations of Counting Problems , 1988, AAECC.

[41]  Peter Bürgisser,et al.  Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.

[42]  Neeraj Kayal,et al.  On the Sum of Square Roots of Polynomials and Related Problems , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[43]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[44]  Guillaume Malod,et al.  The Complexity of Polynomials and Their Coefficient Functions , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[45]  Guillaume Malod,et al.  Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..

[46]  Meena Mahajan,et al.  Identity Testing, Multilinearity Testing, and Monomials in Read-Once/Twice Formulas and Branching Programs , 2012, MFCS.