Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging

Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon, and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provide important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition, and stratigraphy that will support a broader interpretation of surface evolution.

[1]  R. Brockelman,et al.  Tenuous Surface Layer on the Moon: Evidence Derived from Radar Observations , 1965, Science.

[2]  G. S. Levy,et al.  Symposium on Radar and Radiometric Observations of Venus during the 1962 Conjunction: Further Venus radar depolarization experiments , 1964 .

[3]  Lisa R. Gaddis,et al.  Compositional analyses of lunar pyroclastic deposits , 2003 .

[4]  Donald B. Campbell,et al.  Arecibo Radar Mapping of the Lunar Poles: A Search for Ice Deposits , 1997 .

[5]  Richard M. Goldstein,et al.  Preliminary Venus radar results. , 1965 .

[6]  Bruce A. Campbell,et al.  Volcanic and impact deposits of the Moon's Aristarchus Plateau: A new view from Earth-based radar images , 2008 .

[7]  E. M. Jones,et al.  Magellan observations of extended impact crater related features on the surface of Venus , 1992 .

[8]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[9]  Peter G. Ford,et al.  Venus surface radiothermal emission as observed by Magellan , 1992 .

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[12]  William J. Marinelli,et al.  The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration , 2010 .

[13]  J. V. Evans,et al.  Radar observations of Venus at 3.8 CM wavelength , 1966 .

[14]  R. Hagfors,et al.  Radar backscattering from Venus at oblique incidence at a wavelength of 70 CM , 1974 .

[15]  G. H. Pettengill,et al.  The scattering behavior of the Moon at wavelengths of 3.6, 68, and 784 centimeters , 1963 .

[16]  Bruce A. Campbell,et al.  Mars orbital synthetic aperture radar: Obtaining geologic information from radar polarimetry , 2004 .

[17]  黄亚明,et al.  NOAH , 2012 .

[18]  C. A. Pearse Photometry and polarimetry of the moon and their relationship to physical properties of the lunar surface , 1963 .

[19]  R. Keith Raney,et al.  The Lunar Mini-RF Radars: Hybrid Polarimetric Architecture and Initial Results , 2011, Proceedings of the IEEE.

[20]  Bruce A. Campbell,et al.  Detection of small lunar secondary craters in circular polarization ratio radar images , 2010 .

[21]  Bruce A. Campbell,et al.  Merging Magellan emissivity and SAR data for analysis of Venus surface dielectric properties , 1994 .

[22]  Bruce A. Campbell,et al.  Radar probing of planetary regoliths: An example from the northern rim of Imbrium basin , 2006 .

[23]  Bruce A. Campbell,et al.  Earth-Based 12.6-cm Wavelength Radar Mapping of the Moon: New Views of Impact Melt Distribution and Mare Physical Properties , 2010 .

[24]  Bruce A. Campbell,et al.  Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data , 1992 .

[25]  N.J.S. Stacy,et al.  Stokes vector analysis of lunar radar backscatter , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[26]  Bruce A. Campbell,et al.  Volcanic deposits in shield fields and highland regions on Venus: Surface properties from radar polarimetry , 2006 .

[27]  Dan G. Blumberg,et al.  Applications of spaceborne radar laboratory data to the study of aeolian processes , 1997 .

[28]  Bruce A. Campbell,et al.  Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo , 2004 .

[29]  Bruce A. Campbell,et al.  Radar mapping of lunar cryptomaria east of Orientale basin , 2005 .

[30]  Bruce A. Campbell,et al.  Focused 70-cm Wavelength Radar Mapping of the Moon , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[31]  T. Hagfors,et al.  Study of radio echoes from the Moon at 23 centimeters wavelength , 1966 .

[32]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[33]  Keith A. Horton,et al.  A high-resolution radar and CCD imaging study of crater rays in Mare Serenitatis and Mare Nectaris , 1992 .

[34]  Bruce A. Campbell,et al.  Generation and emplacement of fine-grained ejecta in planetary impacts , 2010 .

[35]  Duane O. Muhleman,et al.  Reflection and emission properties on Venus - Alpha Regio , 1992 .

[36]  Bruce A. Campbell,et al.  Earth-based observations of radar-dark crater haloes on the Moon: Implications for regolith properties , 2005 .

[37]  N. Stacy,et al.  High-resolution synthetic aperture radar observations of the Moon , 1993 .

[38]  P. Strevens Iii , 1985 .