41Ca: past, present and future

[1]  D. Heymann,et al.  Comparison of Cl36-Ar36 and Ar39-Ar38 Cosmic Ray Exposure Ages of Dates Fall Iron Meteorites , 1965 .

[2]  Richard E. Lingenfelter,et al.  The lunar neutron flux revisited , 1972 .

[3]  The half-life of 41Ca , 1974 .

[4]  D. Burnett,et al.  Measurement of the lunar neutron density profile , 1975 .

[5]  G. Raisbeck,et al.  Possible use of 41Ca for radioactive dating , 1979, Nature.

[6]  H. Feldmann,et al.  Investigations on cosmic-ray-produced nuclides in iron meteorites, 3. Exposure ages, meteoroid sizes and sample depths determined by mass spectrometric analyses of potassium and rare gases , 1979 .

[7]  R. Middleton A versatile high intensity negative ion source , 1983 .

[8]  R. Teng,et al.  The rochester tandem accelerator mass spectrometry program , 1984 .

[9]  R. Reedy,et al.  Cosmogenic neutron-capture-produced nuclides in stony meteorites , 1986 .

[10]  N. Conard,et al.  Determination of cosmogenic 41Ca in a meteorite with tandem accelerator mass spectrometry , 1986, Nature.

[11]  Revealing histories of exposure using in situ produced (super 26) Al and (super 10) Be in Libyan Desert glass. , 1986 .

[12]  H. F. Lucas,et al.  Calcium-41 Concentration in Terrestrial Materials: Prospects for Dating of Pleistocene Samples , 1987, Science.

[13]  P. Englert,et al.  Measurements of 41Ca spallation cross sections and 41Ca concentrations in the grant meteorite by accelerator mass spectrometry , 1987 .

[14]  Accelerator mass spectrometry with completely stripped 41Ca and 53Mn ions at the Munich tandem accelerator , 1987 .

[15]  J. Klein,et al.  26Al and10Be production in iron meteorites , 1988 .

[16]  D. Fink,et al.  Electromagnetic isotope enrichment for accelerator mass spectrometry of 41Ca , 1989 .

[17]  R. Middleton,et al.  41Ca Concentrations in Modern Bone and Their Implications for Dating , 1989, Radiocarbon.

[18]  D. Fink,et al.  41Ca: Measurement by accelerator mass spectrometry and applications , 1990 .