Gait recognition by two-stage principal component analysis

We describe a methodology for classification of gait (walk, run, jog, etc.) and recognition of individuals based on gait using two successive stages of principal component analysis (PCA) on kinematic data. In psychophysical studies, we have found that observers are sensitive to specific "motion features" that characterize human gait. These spatiotemporal motion features closely correspond to the first few principal components (PC) of the kinematic data. The first few PCs provide a representation of an individual gait as trajectory along a low-dimensional manifold in PC space. A second stage of PCA captures variability in the shape of this manifold across individuals or gaits. This simple eigenspace based analysis is capable of accurate classification across subjects

[1]  D W Grieve,et al.  The assessment of gait. , 1969, Physiotherapy.

[2]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[3]  James E. Cutting,et al.  A program to generate synthetic walkers as dynamic point-light displays , 1978 .

[4]  J. Todd Perception of gait. , 1983, Journal of experimental psychology. Human perception and performance.

[5]  Brian Everitt,et al.  Principles of Multivariate Analysis , 2001 .

[6]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[7]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[8]  N. A. Borghese,et al.  Kinematic determinants of human locomotion. , 1996, The Journal of physiology.

[9]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Goswami,et al.  A new gait parameterization technique by means of cyclogram moments: Application to human slope walking. , 1998, Gait & posture.

[11]  F. Pollick,et al.  Exaggerating Temporal Differences Enhances Recognition of Individuals from Point Light Displays , 2000, Psychological science.

[12]  Larry S. Davis,et al.  An appearance-based body model for multiple people tracking , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[13]  J J Hopfield,et al.  What is a moment? "Cortical" sensory integration over a brief interval. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Rama Chellappa,et al.  Higher-order spectral analysis of human motion , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[15]  M. Pavlova,et al.  Orientation specificity in biological motion perception , 2000, Perception & psychophysics.

[16]  Aaron F. Bobick,et al.  A Multi-view Method for Gait Recognition Using Static Body Parameters , 2001, AVBPA.

[17]  Mark S. Nixon,et al.  Automatic Gait Recognition by Symmetry Analysis , 2001, AVBPA.

[18]  Aaron F. Bobick,et al.  Gait recognition from time-normalized joint-angle trajectories in the walking plane , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Mark S. Nixon,et al.  Model-driven statistical analysis of human gait motion , 2002, Proceedings. International Conference on Image Processing.

[20]  Bijoy K. Ghosh,et al.  Modeling and estimation problems in the turtle visual cortex , 2002, IEEE Transactions on Biomedical Engineering.

[21]  Robert T. Collins,et al.  Silhouette-based human identification from body shape and gait , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[22]  W. Eric L. Grimson,et al.  Gait analysis for recognition and classification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[23]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[24]  Mark S. Nixon,et al.  Automatic gait recognition by symmetry analysis , 2003, Pattern Recognit. Lett..

[25]  Hui Gao,et al.  An expressive three-mode principal components model for gender recognition. , 2004, Journal of vision.

[26]  N. Birbaumer,et al.  Dissociable cortical processing of recognizable and non-recognizable biological movement: analysing gamma MEG activity. , 2004, Cerebral cortex.

[27]  Rama Chellappa,et al.  Identification of humans using gait , 2004, IEEE Transactions on Image Processing.

[28]  Andreas Daffertshofer,et al.  PCA in studying coordination and variability: a tutorial. , 2004, Clinical biomechanics.

[29]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[31]  N. Troje,et al.  Person identification from biological motion: Effects of structural and kinematic cues , 2005, Perception & psychophysics.

[32]  Luc Van Gool,et al.  Bayesian Pixel Classification for Human Tracking , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[33]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Leif H. Finkel,et al.  Two-Stage PCA Extracts Spatiotemporal Features for Gait Recognition , 2006, J. Multim..

[35]  Zhang Peng A Multi-View Method for Gait Recognition Based on the Length of Body0s Parts , 2007 .