The prognostic significance of Smad3, Smad4, Smad3 phosphoisoform expression in esophageal squamous cell carcinoma

[1]  N. Hiraoka,et al.  Upregulated SMAD3 promotes epithelial–mesenchymal transition and predicts poor prognosis in pancreatic ductal adenocarcinoma , 2014, Laboratory Investigation.

[2]  Jeong Hwan Park,et al.  Nuclear expression of Smad proteins and its prognostic significance in clear cell renal cell carcinoma. , 2013, Human pathology.

[3]  K. Matsuzaki Smad phospho-isoforms direct context-dependent TGF-β signaling. , 2013, Cytokine & growth factor reviews.

[4]  C. Park,et al.  Smad3 and Smad3 Phosphoisoforms Are Prognostic Markers of Gastric Carcinoma , 2013, Digestive Diseases and Sciences.

[5]  R. Fitzgerald,et al.  Screening for oesophageal cancer , 2012, Nature Reviews Clinical Oncology.

[6]  C. Park,et al.  Smad3 and its phosphoisoforms are prognostic predictors of hepatocellular carcinoma after curative hepatectomy. , 2012, Hepatobiliary & pancreatic diseases international : HBPD INT.

[7]  G. Han,et al.  Roles of TGFβ signaling Smads in squamous cell carcinoma , 2011, Cell & Bioscience.

[8]  Toshihito Seki,et al.  Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. , 2009, Cancer research.

[9]  E. Hatano,et al.  Inhibition of c‐Jun NH2‐terminal kinase switches Smad3 signaling from oncogenesis to tumor‐ suppression in rat hepatocellular carcinoma , 2009, Hepatology.

[10]  T. Veenstra,et al.  A Negative Feedback Control of Transforming Growth Factor-β Signaling by Glycogen Synthase Kinase 3-mediated Smad3 Linker Phosphorylation at Ser-204* , 2009, The Journal of Biological Chemistry.

[11]  M. Hongo,et al.  Epidemiology of esophageal cancer: Orient to Occident. Effects of chronology, geography and ethnicity , 2009, Journal of gastroenterology and hepatology.

[12]  I. Matsuura,et al.  Transforming Growth Factor-β-inducible Phosphorylation of Smad3* , 2009, Journal of Biological Chemistry.

[13]  K. Koike,et al.  Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)‐β signaling from tumor suppression to oncogenesis in early chronic hepatitis B , 2009, Hepatology.

[14]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[15]  Katsunori Yoshida,et al.  Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor β signaling, promoting cirrhosis and hepatocellular carcinoma , 2007, Hepatology.

[16]  H. Matsui,et al.  Reversible Smad-dependent signaling between tumor suppression and oncogenesis. , 2007, Cancer research.

[17]  C. Tzao,et al.  Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: correlation with clinicopathological parameters. , 2006, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[18]  K. Matsuzaki,et al.  Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis. , 2006, Histology and histopathology.

[19]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[20]  Fang Liu,et al.  Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. , 2005, Biochemistry.

[21]  H. Kuwano,et al.  TGF-β signaling in esophageal squamous cell carcinoma , 2005, Esophagus.

[22]  Katsunori Yoshida,et al.  Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis. , 2005, Cancer research.

[23]  Anita B. Roberts,et al.  Role of Rho/ROCK and p38 MAP Kinase Pathways in Transforming Growth Factor-β-mediated Smad-dependent Growth Inhibition of Human Breast Carcinoma Cells in Vivo* , 2004, Journal of Biological Chemistry.

[24]  H. Matsui,et al.  TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions , 2004, Oncogene.

[25]  Fang Liu,et al.  Cyclin-dependent kinases regulate the antiproliferative function of Smads , 2004, Nature.

[26]  H. Kuwano,et al.  Increased expression of c‐Ski as a co‐repressor in transforming growth factor‐β signaling correlates with progression of esophageal squamous cell carcinoma , 2004, International journal of cancer.

[27]  Katsunori Yoshida,et al.  p38 MAPK mediates fibrogenic signal through smad3 phosphorylation in rat myofibroblasts , 2003, Hepatology.

[28]  T. Nakajima,et al.  Reduced expression of transforming growth factor‐β receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma , 2003, International journal of cancer.

[29]  H. Kuwano,et al.  High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. , 2002, Cancer research.

[30]  J. Lee,et al.  bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. , 1995, Cancer research.

[31]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[32]  F. Bosman,et al.  WHO Classification of Tumours of the Digestive System , 2010 .

[33]  S. Ross,et al.  How the Smads regulate transcription. , 2008, The international journal of biochemistry & cell biology.

[34]  Xuedong Liu,et al.  Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. , 2008, Genes & development.

[35]  R. Derynck,et al.  Specificity and versatility in tgf-beta signaling through Smads. , 2005, Annual review of cell and developmental biology.

[36]  Shigeo Mori GF-^|^beta;and HGF Transmit the Signals through JNK-Dependent Smad3 Phosphorylation at the Linker Regions , 2005 .