Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex

Generating a comprehensive description of cortical networks requires a large-scale, systematic approach. To that end, we have begun a pipeline project using multipatch electrophysiology, supplemented with two-photon optogenetics, to characterize connectivity and synaptic signaling between classes of neurons in adult mouse primary visual cortex (V1) and human cortex. We focus on producing results detailed enough for the generation of computational models and enabling comparison with future studies. Here, we report our examination of intralaminar connectivity within each of several classes of excitatory neurons. We find that connections are sparse but present among all excitatory cell classes and layers we sampled, and that most mouse synapses exhibited short-term depression with similar dynamics. Synaptic signaling between a subset of layer 2/3 neurons, however, exhibited facilitation. These results contribute to a body of evidence describing recurrent excitatory connectivity as a conserved feature of cortical microcircuits.

[1]  A. Peters Thalamic input to the cerebral cortex , 1979, Trends in Neurosciences.

[2]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  The Likelihood of a Synapse Between Two Pyramidal Cells , 1991 .

[4]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[5]  P. Rakić,et al.  Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.

[7]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[8]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[9]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[10]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[11]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[12]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[13]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[14]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[15]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[16]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[17]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[18]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[19]  Henry Markram,et al.  Coding of temporal information by activity-dependent synapses. , 2002, Journal of neurophysiology.

[20]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[21]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[22]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[23]  Xiao-Jing Wang,et al.  A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability , 1998, Journal of Computational Neuroscience.

[24]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[25]  Wulfram Gerstner,et al.  Short-Term Synaptic Plasticity Orchestrates the Response of Pyramidal Cells and Interneurons to Population Bursts , 2005, Journal of Computational Neuroscience.

[26]  Xiaoming Jin,et al.  Enhanced Excitatory Synaptic Connectivity in Layer V Pyramidal Neurons of Chronically Injured Epileptogenic Neocortex in Rats , 2006, The Journal of Neuroscience.

[27]  Alex M Thomson,et al.  Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. , 2006, Cerebral cortex.

[28]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[29]  伏信 進矢,et al.  アイオワで computational な夏 , 2007 .

[30]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[31]  G. Silberberg,et al.  Measurement and analysis of postsynaptic potentials using a novel voltage-deconvolution method. , 2008, Journal of neurophysiology.

[32]  Gevork Hartoonian Mies , 2008, Claudia Larcher - Rooms.

[33]  C. Bourque Central mechanisms of osmosensation and systemic osmoregulation , 2008, Nature Reviews Neuroscience.

[34]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[35]  Hongkui Zeng,et al.  An Inducible and Reversible Mouse Genetic Rescue System , 2008, PLoS genetics.

[36]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[37]  Alex S. Ferecskó,et al.  The fractions of short- and long-range connections in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[38]  Norbert Hájos,et al.  Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content , 2009, Journal of Neuroscience Methods.

[39]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[40]  J. Borst The low synaptic release probability in vivo , 2010, Trends in Neurosciences.

[41]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[42]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[43]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[44]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[45]  Y. Kubota,et al.  Highly Differentiated Projection-Specific Cortical Subnetworks , 2011, The Journal of Neuroscience.

[46]  A. Reyes,et al.  Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex , 2012, The Journal of Neuroscience.

[47]  Benjamin F. Grewe,et al.  Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation , 2012, Nature Methods.

[48]  Rafael Yuste,et al.  Two-photon optogenetics of dendritic spines and neural circuits in 3D , 2012, Nature Methods.

[49]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[50]  Estimating neuronal connectivity from axonal and dendritic density fields , 2013, Front. Comput. Neurosci..

[51]  Theoretical models of synaptic short term plasticity , 2013, Front. Comput. Neurosci..

[52]  Matthias H. Hennig,et al.  Theoretical models of synaptic short term plasticity , 2013, Front. Comput. Neurosci..

[53]  Arjen van Ooyen,et al.  Estimating neuronal connectivity from axonal and dendritic density fields , 2013, Front. Comput. Neurosci..

[54]  Morgane M. Roth,et al.  Pyramidal Cells Make Specific Connections onto Smooth (GABAergic) Neurons in Mouse Visual Cortex , 2014, PLoS biology.

[55]  Jinde Cao,et al.  Introduction to Computational Neuroscience , 2016 .

[56]  G. Feng,et al.  Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. , 2014, Methods in molecular biology.

[57]  Ian R. Wickersham,et al.  The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals Cortical Microcircuits Underlying Visual Processing , 2014, Neuron.

[58]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[59]  Paul B. Manis,et al.  ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research , 2014, Front. Neuroinform..

[60]  M. Scanziani,et al.  Motor Cortex Maturation Is Associated with Reductions in Recurrent Connectivity among Functional Subpopulations and Increases in Intrinsic Excitability , 2015, The Journal of Neuroscience.

[61]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[62]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[63]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[64]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[65]  Jens Kremkow,et al.  In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons , 2015, Cell reports.

[66]  P. J. Sjöström,et al.  Synapse-type-specific plasticity in local circuits , 2015, Current Opinion in Neurobiology.

[67]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[68]  Alison L. Barth,et al.  Neocortical Somatostatin Neurons Reversibly Silence Excitatory Transmission via GABAb Receptors , 2015, Current Biology.

[69]  Rafael Yuste,et al.  Comment on “Principles of connectivity among morphologically defined cell types in adult neocortex” , 2016, Science.

[70]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[71]  Nicolas Brunel,et al.  Is cortical connectivity optimized for storing information? , 2016, Nature Neuroscience.

[72]  Alexander S. Ecker,et al.  Response to Comment on “Principles of connectivity among morphologically defined cell types in adult neocortex” , 2016, Science.

[73]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[74]  J. Triesch,et al.  Nonrandom network connectivity comes in pairs , 2016, Network Neuroscience.

[75]  C. Petersen,et al.  Layer-Dependent Short-Term Synaptic Plasticity Between Excitatory Neurons in the C2 Barrel Column of Mouse Primary Somatosensory Cortex , 2017, Cerebral cortex.

[76]  L. Goff,et al.  Variation in Activity State, Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical Projection Neurons. , 2018, Cell reports.

[77]  Brian R. Lee,et al.  Classification of electrophysiological and morphological types in mouse visual cortex , 2018, bioRxiv.

[78]  Michael Z. Lin,et al.  A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality , 2018, Cell.

[79]  Rava Azeredo da Silveira,et al.  Interpretation of correlated neural variability from models of feed-forward and recurrent circuits , 2017, PLoS Comput. Biol..

[80]  T. Branco,et al.  A synaptic threshold mechanism for computing escape decisions , 2018, Nature.