Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia

[1]  Shuo Lin,et al.  A zebrafish model for hepatoerythropoietic porphyria , 1998, Nature Genetics.

[2]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[3]  A. Amores,et al.  The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. , 1998, Developmental biology.

[4]  M. Ekker,et al.  A microsatellite genetic linkage map for zebrafish (Danio rerio) , 1998, Nature Genetics.

[5]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[6]  H. Dailey,et al.  Erythroid 5-aminolevulinate synthase is required for erythroid differentiation in mouse embryonic stem cells. , 1998, Blood cells, molecules & diseases.

[7]  J. Postlethwait,et al.  SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. , 1998, Genes & development.

[8]  E. Lander,et al.  Zebrafish genomic library in yeast artificial chromosomes. , 1998, Genomics.

[9]  N. Andrews,et al.  Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Sassa,et al.  Deficient heme and globin synthesis in embryonic stem cells lacking the erythroid-specific delta-aminolevulinate synthase gene. , 1998, Blood.

[11]  Alexander F. Schier,et al.  Positional Cloning Identifies Zebrafish one-eyed pinhead as a Permissive EGF-Related Ligand Required during Gastrulation , 1998, Cell.

[12]  Z. Gong,et al.  Rapid identification and isolation of zebrafish cDNA clones. , 1997, Gene.

[13]  N. Andrews,et al.  Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene , 1997, Nature genetics.

[14]  B. Grosbois,et al.  Haemochromatosis Cys282Tyr mutation in pyridoxine-responsive sideroblastic anaemia , 1997, The Lancet.

[15]  A. Brownlie,et al.  Characterization of Adult α- and β-Globin Genes in the Zebrafish , 1997 .

[16]  D A Kane,et al.  Characterization of zebrafish mutants with defects in embryonic hematopoiesis. , 1996, Development.

[17]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[18]  D. Higgs,et al.  ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. , 1996, Human molecular genetics.

[19]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[20]  M. C. Ellis,et al.  A novel MHC class I–like gene is mutated in patients with hereditary haemochromatosis , 1996, Nature Genetics.

[21]  J. Postlethwait,et al.  Centromere-linkage analysis and consolidation of the zebrafish genetic map. , 1996, Genetics.

[22]  C. Amemiya,et al.  A nonradioactive method for improved restriction analysis and fingerprinting of large P1 artificial chromosome clones. , 1996, Genetic analysis : biomolecular engineering.

[23]  D. Ransom,et al.  Intraembryonic hematopoietic cell migration during vertebrate development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  T. Cox,et al.  Molecular defects of erythroid 5-aminolevulinate synthase in X-linked sideroblastic anemia , 1995, Journal of bioenergetics and biomembranes.

[26]  J. Postlethwait,et al.  Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I. , 1995, Genetics.

[27]  I. London,et al.  Regulation of protein synthesis by heme-regulated eIF-2α kinase , 1995 .

[28]  Samuel E. Lux,et al.  Blood: Principles and Practice of Hematology , 1995 .

[29]  D. Bishop,et al.  X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific delta-aminolevulinate synthase gene (ALAS2) in the original family described by Cooley. , 1994, Blood.

[30]  J. Postlethwait,et al.  A genetic linkage map for the zebrafish. , 1994, Science.

[31]  E. Wilson,et al.  Basic fibroblast growth factor antagonizes transforming growth factor beta-mediated erythroid differentiation in K562 cells. , 1994, Blood.

[32]  S. Sassa,et al.  Regulation of beta-globin mRNA accumulation by heme in dimethyl sulfoxide (DMSO)-sensitive and DMSO-resistant murine erythroleukemia cells , 1994 .

[33]  T. Cox,et al.  X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. , 1994, The New England journal of medicine.

[34]  S. Thein,et al.  Beta-thalassemia unlinked to the beta-globin gene in an English family. , 1993, Blood.

[35]  M. Brandenburg,et al.  5‐Aminolevulinate synthase in sideroblastic anemias: mRNA and enzyme activity levels in bone marrow cells , 1992, American journal of hematology.

[36]  E. Lander,et al.  Identification of polymorphic simple sequence repeats in the genome of the zebrafish. , 1992, Genomics.

[37]  D. Bishop,et al.  Enzymatic defect in "X-linked" sideroblastic anemia: molecular evidence for erythroid delta-aminolevulinate synthase deficiency. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Allen Vertebrate blood cells. , 1989 .

[39]  L. Powell,et al.  Iron overload complicating sideroblastic anemia--is the gene for hemochromatosis responsible? , 1989, Gastroenterology.

[40]  J. D. Engel,et al.  Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  I. Peake The Molecular Basis of Blood Diseases , 1988 .

[42]  G. Stamatoyannopoulos,et al.  The molecular basis of blood diseases , 1987 .

[43]  A. May,et al.  Globin chain synthesis ratios in sideroblastic anaemia , 1983, British journal of haematology.

[44]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[45]  Klock Jc,et al.  Functional changes in neutrophils collected by filtration leukapheresis and their relationship to cellular events that occur during adherence of neutrophils to nylon fibers. , 1979 .

[46]  R. Meints,et al.  Enhancement of erythroid colony growth in culture by hemin. , 1979, Experimental hematology.

[47]  A. Beaudet,et al.  Increase in globin chains and globin mRNA in erythroleukemia cells in response to hemin. , 1977, Archives of biochemistry and biophysics.

[48]  Y. Kunz,et al.  ONTOGENESIS OF HAEMATOPOIETIC SITES IN BRACHYDANIO RERIO (HAMILTON‐BUCHANAN) (TELEOSTEI) * , 1977, Development, growth & differentiation.

[49]  S. Sassa,et al.  Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells , 1976, The Journal of experimental medicine.

[50]  J. White,et al.  Globin Synthesis in Sideroblastic Anaemia , 1973 .

[51]  T. Hunt,et al.  Control of globin synthesis: the role of heme. , 1972, Journal of molecular biology.

[52]  J. White,et al.  Globin Synthesis in Sideroblastic Anaemia I α AND β PEPTIDE CHAIN SYNTHESIS , 1971 .

[53]  B. S. Leavell,et al.  Fundamentals of clinical hematology , 1971 .

[54]  W. T. Catton Blood cell formation in certain teleost fishes. , 1951, Blood.

[55]  G Gōmōri,et al.  Microtechnical Demonstration of Iron: A Criticism of its Methods. , 1936, The American journal of pathology.