Development of thermal-resistant Al-Zr based conductor alloys via microalloying with Sc and manipulating thermomechanical processing

[1]  A. Maltais,et al.  Review on recent progress in Al–Mg–Si 6xxx conductor alloys , 2022, Journal of Materials Research.

[2]  Fu-qin Jiang,et al.  Internal friction and heat resistance of Al, Al–Ce, Al–Ce–Zr and Al–Ce–(Sc)–(Y) aluminum alloys with high strength and high electrical conductivity , 2021 .

[3]  S. Haigh,et al.  Stability and Stoichiometry of L1 2 Al 3(Sc,Zr) Dispersoids in Al-(Si)-Sc-Zr Alloys , 2021 .

[4]  R. Holmestad,et al.  Effect of pre-deformation on age-hardening behaviors in an Al-Mg-Cu alloy , 2021, Materials Science and Engineering: A.

[5]  A. Maltais,et al.  Effects of natural aging and pre-aging on the strength and electrical conductivity in Al-Mg-Si AA6201 conductor alloys , 2021, Materials Science and Engineering: A.

[6]  H. Cui,et al.  Study about improving mechanism of electrical conductivity of AA1070Al treated by a novel composite boron treatment with trace Ti , 2021, Journal of Alloys and Compounds.

[7]  Yuanwei Sun,et al.  Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing , 2020 .

[8]  M. Salavati‐Niasari,et al.  Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach , 2020, Ultrasonics sonochemistry.

[9]  R. Barkov,et al.  Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity , 2020 .

[10]  Z. Cai,et al.  Microstructure Evolution and Properties Tailoring of Rheo-Extruded Al-Sc-Zr-Fe Conductor via Thermo-Mechanical Treatment , 2020, Materials.

[11]  R. Guan,et al.  Tailored Mechanical and Conductive Properties of Continuous Rheo-Extruded Al–Sc–Zr Alloy Conductors by Thermomechanical Treatment , 2020, MATERIALS TRANSACTIONS.

[12]  B. Zhang,et al.  Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing , 2019, Journal of Materials Science & Technology.

[13]  H. Liu,et al.  Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al–Sc–Zr alloys , 2019, Transactions of Nonferrous Metals Society of China.

[14]  J. A. Araújo,et al.  The influence of the fatigue process zone size on fatigue life estimations performed on aluminum wires containing geometric discontinuities using the Theory of Critical Distances , 2018, Theoretical and Applied Fracture Mechanics.

[15]  R. Kaibyshev,et al.  Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys , 2017 .

[16]  M. Salavati‐Niasari,et al.  Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes , 2017 .

[17]  Zhanyong Zhao,et al.  A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates , 2017 .

[18]  M. Salavati‐Niasari,et al.  Facile preparation of Nd 2 Zr 2 O 7 –ZrO 2 nanocomposites as an effective photocatalyst via a new route , 2017 .

[19]  Suhrit Mula,et al.  Effect of zirconium on thermal stability of nanocrystalline aluminium alloy prepared by mechanical alloying , 2016 .

[20]  M. Salavati‐Niasari,et al.  Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: Structural, optical and photocatalytic studies , 2016 .

[21]  M. Salavati‐Niasari,et al.  Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach , 2016, Journal of Materials Science: Materials in Electronics.

[22]  J.L.A. Ferreira,et al.  Assessment of the fatigue failure of an All Aluminium Alloy Cable (AAAC) for a 230kV transmission line in the Center-West of Brazil , 2016 .

[23]  Guojun Zhang,et al.  Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum , 2015 .

[24]  O. Melikhova,et al.  Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation , 2015, Metallurgical and Materials Transactions A.

[25]  N. Parson,et al.  Effect of homogenization treatment and silicon content on the microstructure and hot workability of dilute Al–Fe–Si alloys , 2014 .

[26]  Baode Sun,et al.  Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys , 2014 .

[27]  R. Guan,et al.  Effect of Zr and Sc on mechanical properties and electrical conductivities of Al wires , 2014 .

[28]  Z. Zhang,et al.  Effect of nickel and vanadium on iron bearing intermetallic phases in AA 5657 simulated DC castings , 2014 .

[29]  W. J. Li,et al.  Heat-resistant Al–0.2Sc–0.04Zr electrical conductor , 2012 .

[30]  C. Wolverton,et al.  Role of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al–Sc–Zr alloys , 2012 .

[31]  Li Hongying,et al.  Precipitation evolution and coarsening resistance at 400 °C of Al microalloyed with Zr and Er , 2012 .

[32]  Liangliang Wei,et al.  Effects of La addition on the mechanical properties and thermal-resistant properties of Al–Mg–Si–Zr alloys based on AA 6201 , 2012 .

[33]  Wuhua Yuan,et al.  Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor , 2011 .

[34]  E. Kozeschnik,et al.  Modeling of excess vacancy annihilation at different types of sinks , 2011 .

[35]  D. Seidman,et al.  Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys , 2011 .

[36]  D. Seidman,et al.  Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging , 2010 .

[37]  D. Seidman,et al.  Roles of impurities on precipitation kinetics of dilute Al-Sc alloys , 2010 .

[38]  L. Rong,et al.  Precipitation of (Al,Si)3Sc in an Al–Sc–Si alloy , 2009 .

[39]  K. Marthinsen,et al.  Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium , 2009 .

[40]  C. Sinclair,et al.  The Role of Excess Vacancies on Precipitation Kinetics in an Al-Mg-Sc Alloy , 2008 .

[41]  D. Seidman,et al.  Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C , 2008 .

[42]  K. Marthinsen,et al.  Thermal stability of Al3(Scx,Zr1-x)-dispersoids in extruded aluminium alloys , 2008 .

[43]  D. Eskin,et al.  Optimization of hardening of Al–Zr–Sc cast alloys , 2006 .

[44]  D. Seidman,et al.  Criteria for developing castable, creep-resistant aluminum-based alloys – A review , 2006, International Journal of Materials Research.

[45]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[46]  D. Seidman,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II-coarsening of Al3(Sc1−xZrx) precipitates , 2005 .

[47]  V. Radmilović,et al.  Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys , 2005 .

[48]  K. Marthinsen,et al.  Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys , 2004 .

[49]  D. Seidman,et al.  Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures , 2003 .

[50]  F. J. Humphreys,et al.  Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium , 2003 .

[51]  Joseph D. Robson,et al.  Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys , 2001 .

[52]  Z. Horita,et al.  Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing , 2001 .

[53]  D. Seidman,et al.  Effects of Si and Fe micro-additions on the aging response of a dilute Al-0.08Zr-0.08Hf-0.045Er at.% alloy , 2019, Materials Characterization.

[54]  V. Neubert,et al.  Annealing effects in hot-deformed Al-Mn-Sc-Zr alloys , 2015 .

[55]  R. Valiev,et al.  Nanostructured Al and Cu alloys with superior strength and electrical conductivity , 2015, Journal of Materials Science.

[56]  Bao Yong-qiang Influence of Boronization Treatment on the Contents of Ti and V and Properties of Electrical Aluminum , 2007 .

[57]  Jun Sun,et al.  Solute clusters-promoted strength-ductility synergy in Al-Sc alloy , 2022 .