A Selection Model for Optimal Fuzzy Clustering Algorithm and Number of Clusters Based on Competitive Comprehensive Fuzzy Evaluation

Fuzzy c-means (FCM) and its variants suffer from two problems-local minima and cluster validity-which have a direct impact on the formation of final clustering. There are two strategies-optimization and center initialization strategies-that address the problem of local minima. This paper proposes a center initialization approach based on a minimum spanning tree to keep FCM from local minima. With regard to cluster validity, various strategies have been proposed. On the basis of the fuzzy cluster validity index, this paper proposes a selection model that combines multiple pairs of a fuzzy clustering algorithm and cluster validity index to identify the number of clusters and simultaneously selects the optimal fuzzy clustering for a dataset. The promising performance of the proposed center-initialization method and selection model is demonstrated by experiments on real datasets.

[1]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[2]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[3]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[4]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[5]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the silhouette width criterion for cluster analysis , 2006, Fuzzy Sets Syst..

[6]  R. Kalaba,et al.  A comparison of two methods for determining the weights of belonging to fuzzy sets , 1979 .

[7]  HalkidiMaria,et al.  Clustering validity checking methods , 2002 .

[8]  Rajesh N. Davé,et al.  Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries , 1992, Pattern Recognit..

[9]  Young-Il Kim,et al.  A cluster validation index for GK cluster analysis based on relative degree of sharing , 2004, Inf. Sci..

[10]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[11]  Christian Borgelt,et al.  Effects of Irrelevant Attributes in Fuzzy Clustering , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[12]  Ujjwal Maulik,et al.  A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification , 2005, Fuzzy Sets Syst..

[13]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[14]  Pedro Larrañaga,et al.  An empirical comparison of four initialization methods for the K-Means algorithm , 1999, Pattern Recognit. Lett..

[15]  Kurra Bhaswan,et al.  New measures for evaluating fuzzy partitions induced through c-shells clustering , 1992, Other Conferences.

[16]  Arnaud Devillez,et al.  A fuzzy hybrid hierarchical clustering method with a new criterion able to find the optimal partition , 2002, Fuzzy Sets Syst..

[17]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[18]  Minho Kim,et al.  New indices for cluster validity assessment , 2005, Pattern Recognit. Lett..

[19]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..

[20]  Yossef Steinberg,et al.  A comparison of cluster validity criteria for a mixture of normal distributed data , 2000, Pattern Recognit. Lett..

[21]  Eytan Domany,et al.  Resampling Method for Unsupervised Estimation of Cluster Validity , 2001, Neural Computation.

[22]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[23]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[24]  Joachim M. Buhmann,et al.  A Resampling Approach to Cluster Validation , 2002, COMPSTAT.

[25]  Babak Rezaee,et al.  A cluster validity index for fuzzy clustering , 2010, Fuzzy Sets Syst..

[26]  Stephen J. Redmond,et al.  A method for initialising the K-means clustering algorithm using kd-trees , 2007, Pattern Recognit. Lett..

[27]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[28]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[29]  Shengrui Wang,et al.  FCM-Based Model Selection Algorithms for Determining the Number of Clusters , 2004, Pattern Recognit..

[30]  Shehroz S. Khan,et al.  Cluster center initialization algorithm for K-means clustering , 2004, Pattern Recognit. Lett..

[31]  Sung-Bae Cho,et al.  Fuzzy Bayesian validation for cluster analysis of yeast cell-cycle data , 2006, Pattern Recognit..

[32]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[33]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[34]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[35]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[36]  James C. Bezdek,et al.  Correction to "On Cluster Validity for the Fuzzy c-Means Model" [Correspondence] , 1997, IEEE Trans. Fuzzy Syst..

[37]  G. Tsekouras,et al.  A new approach for measuring the validity of the fuzzy c -means algorithm , 2004 .